scholarly journals Providing Hands On Experiences In A Mechanical Engineering Controls Systems Course

2020 ◽  
Author(s):  
John-David Yoder ◽  
Michael Rider ◽  
Juliet Hurtig
Author(s):  
Marvin Drewel ◽  
Leon Özcan ◽  
Jürgen Gausemeier ◽  
Roman Dumitrescu

AbstractHardly any other area has as much disruptive potential as digital platforms in the course of digitalization. After serious changes have already taken place in the B2C sector with platforms such as Amazon and Airbnb, the B2B sector is on the threshold to the so-called platform economy. In mechanical engineering, pioneers like GE (PREDIX) and Claas (365FarmNet) are trying to get their hands on the act. This is hardly a promising option for small and medium-sized companies, as only a few large companies will survive. Small and medium-sized enterprises (SMEs) are already facing the threat of losing direct consumer contact and becoming exchangeable executers. In order to prevent this, it is important to anticipate at an early stage which strategic options exist for the future platform economy and which adjustments to the product program should already be initiated today. Basically, medium-sized companies in particular lack a strategy for an advantageous entry into the future platform economy.The paper presents different approaches to master the challenges of participating in the platform economy by using platform patterns. Platform patterns represent proven principles of already existing platforms. We show how we derived a catalogue with 37 identified platform patterns. The catalogue has a generic design and can be customized for a specific use case. The versatility of the catalogue is underlined by three possible applications: (1) platform ideation, (2) platform development, and (3) platform characterization.


Author(s):  
A Gonzalez-Buelga ◽  
I Renaud-Assemat ◽  
B Selwyn ◽  
J Ross ◽  
I Lazar

This paper focuses on the development, delivery and preliminary impact analysis of an engineering Work Experience Week (WEW) programme for KS4 students in the School of Civil, Aerospace and Mechanical Engineering (CAME) at the University of Bristol, UK. Key stage 4, is the legal term for the two years of school education which incorporate GCSEs in England, age 15–16. The programme aims to promote the engineering profession among secondary school pupils. During the WEW, participants worked as engineering researchers: working in teams, they had to tackle a challenging engineering design problem. The experience included hands-on activities and the use of state-of-the-art rapid prototyping and advanced testing equipment. The students were supervised by a group of team leaders, a diverse group of undergraduate and postgraduate engineering students, technical staff, and academics at the School of CAME. The vision of the WEW programme is to transmit the message that everybody can be an engineer, that there are plenty of different routes into engineering that can be taken depending on pupils’ strengths and interests and that there are a vast amount of different engineering careers and challenges to be tackled by the engineers of the future. Feedback from the participants in the scheme has been overwhelmingly positive.


Author(s):  
Eniko T. Enikov ◽  
Estelle Eke

Teaching classical controls systems design to mechanical engineering students presents unique challenges. While most mechanical engineering programs prepare students to be well-versed in the application of physical principles and modeling aspects of physical systems, implementation of closed loop control and system-level analysis is lagging. It is not uncommon that students report difficulty in conceptualizing even common controls systems terms such as steady-state error and disturbance rejection. Typically, most courses focus on the theoretical analysis and modeling, but students are left asking the questions…How do I implement a phase-lead compensator? …What is a non-minimum phase system? This paper presents an innovative approach in teaching control systems design course based on the use of a low-cost apparatus that has the ability to directly communicate with MATLAB and its Simulink toolbox, allowing students to drag-and-drop controllers and immediately test their effect on the response of the physical plant. The setup consists of a DC micro-motor driving a propeller attached to a carbon-fiber rod. The angular displacement of the rod is measured with an analog potentiometer, which acts as the pivot point for the carbon fiber rod. The miniature circuit board is powered by the USB port of a laptop and communicates to the host computer using the a virtual COM port. MATLAB/Simulink communicates to the board using its serial port read/write blocks to command the motor and detect the deflection angle. This presentation describes a typical semester-long experimental protocol facilitated by the low-cost kit. The kit allows demonstration of classical PID, phase lead and lag controllers, as well as non-linear feedback linearization techniques. Comparison between student gains before and after the introduction of the mechatronic kits are also provided.


2020 ◽  
Author(s):  
Yasser Al Hamidi ◽  
Reza Tafreshi ◽  
Mahmoud El Zamli

Author(s):  
Mohamed B. Trabia ◽  
Kevin Nelson

There is a trend toward increasing exposure of students to hands-on experience in mechanical engineering design courses as these courses are usually limited to generating calculations and drawings of mechanical designs. Students in these courses may lack the ability to visualize and create the physical objects that correspond to their calculations. This limitation may negatively affect students, especially those with limited hands-on experience. To address this issue, the Department of Mechanical Engineering, University of Nevada, Las Vegas (UNLV) started requiring students to create their design using a rapid prototyping machine as a part of the Mechanical Engineering Design Course (ME 440). Students in this course work in teams to create projects starting from abstract statements. They are required to use their calculations as a means to create solid models of the components of their designs and print them on the rapid prototyping machine. Such an approach results in a better understanding of the functionalities of components as well as fit and tolerance issues. Student feedback is used as well as future venues for improving the course.


Author(s):  
Amir Jokar ◽  
Stephen Solovitz

This study describes a model for developing a thermo/fluids curriculum in a new mechanical engineering program. Hands-on experience and applied engineering research are the center of this development. The efforts in creating undergraduate, elective, and graduate level courses and laboratories in the fundamental topics of thermodynamics, fluid mechanics, and heat transfer are reviewed and explained in detail. A dual approach has been taken in developing the curriculum, so that both undergraduate and graduate students can utilize the facility in their research activities. This development has been revised and optimized since its initiation in 2005, and it has successfully been accredited by ABET. The good results obtained from this model can be used in developing mechanical engineering programs, especially for smaller-sized institutions.


Author(s):  
Geoffrey J. Peter

Modern technology and manufacturing methods often require engineers who understand the fundamental principles of vibration theory and who are also skilled in vibration applications. Simply processing, remembering and applying the material learned from lectures and laboratory experiments with artificial criteria are inadequate. Hands-on teaching techniques with real-world problems are needed to complete the engineering students’ education. This paper demonstrates how hands-on experiments performed in industry support and increase the students’ understanding of fundamental principles and skill in their applications. Graduates with both knowledge and skill are more competitive in today’s job market. A one-quarter industry-based vibration course was developed and taught with a hands-on segment at the Manufacturing and Mechanical Engineering and Technology (MMET) program at Oregon Institute of Technology (OIT) - Portland Campus. This novel instructional approach provided students with the opportunity to immediately apply material, learned in class and laboratory, in real-world industry situations with real-world problems. This instructional approach is applicable in many engineering fields and the author found the mechanical vibrations class particularly well suited for this instructional design style. The hands-on approach, grounded in the vibration course curriculum, provided a direct link to the fundamentals of vibration in industry. Student comments are included to demonstrate the value perceived by the students. Although this curriculum experiment involved mechanical engineering technology students, it would benefit mechanical engineering students equally well. In addition, the paper provides a brief description of the industries that participated in this project. Industries were selected because they use vibration based manufacturing, perform extreme testing or design their products to avoid failure due to vibrations.


Sign in / Sign up

Export Citation Format

Share Document