scholarly journals Wireless-Integrated Embedded Real-Time Control: A Case Study in Adopting Resources for Development of a Low-Cost Interdisciplinary Laboratory Project

2020 ◽  
Author(s):  
Paul Flikkema ◽  
Kenji Yamamoto ◽  
Carol Haden ◽  
Jeff Frolik ◽  
Tom Weller
1997 ◽  
Vol 36 (8-9) ◽  
pp. 331-336 ◽  
Author(s):  
Gabriela Weinreich ◽  
Wolfgang Schilling ◽  
Ane Birkely ◽  
Tallak Moland

This paper presents results from an application of a newly developed simulation tool for pollution based real time control (PBRTC) of urban drainage systems. The Oslo interceptor tunnel is used as a case study. The paper focuses on the reduction of total phosphorus Ptot and ammonia-nitrogen NH4-N overflow loads into the receiving waters by means of optimized operation of the tunnel system. With PBRTC the total reduction of the Ptot load is 48% and of the NH4-N load 51%. Compared to the volume based RTC scenario the reductions are 11% and 15%, respectively. These further reductions could be achieved with a relatively simple extension of the operation strategy.


Author(s):  
Hamid Khakpour Nejadkhaki ◽  
John F. Hall ◽  
Minghui Zheng ◽  
Teng Wu

A platform for the engineering design, performance, and control of an adaptive wind turbine blade is presented. This environment includes a simulation model, integrative design tool, and control framework. The authors are currently developing a novel blade with an adaptive twist angle distribution (TAD). The TAD influences the aerodynamic loads and thus, system dynamics. The modeling platform facilitates the use of an integrative design tool that establishes the TAD in relation to wind speed. The outcome of this design enables the transformation of the TAD during operation. Still, a robust control method is required to realize the benefits of the adaptive TAD. Moreover, simulation of the TAD is computationally expensive. It also requires a unique approach for both partial and full-load operation. A framework is currently being developed to relate the TAD to the wind turbine and its components. Understanding the relationship between the TAD and the dynamic system is crucial in the establishment of real-time control. This capability is necessary to improve wind capture and reduce system loads. In the current state of development, the platform is capable of maximizing wind capture during partial-load operation. However, the control tasks related to Region 3 and load mitigation are more complex. Our framework will require high-fidelity modeling and reduced-order models that support real-time control. The paper outlines the components of this framework that is being developed. The proposed platform will facilitate expansion and the use of these required modeling techniques. A case study of a 20 kW system is presented based upon the partial-load operation. The study demonstrates how the platform is used to design and control the blade. A low-dimensional aerodynamic model characterizes the blade performance. This interacts with the simulation model to predict the power production. The design tool establishes actuator locations and stiffness properties required for the blade shape to achieve a range of TAD configurations. A supervisory control model is implemented and used to demonstrate how the simulation model blade performs in the case study.


1986 ◽  
Vol 19 (13) ◽  
pp. 113-117
Author(s):  
J.J. Serrano ◽  
C. Cebrián ◽  
J. Vila ◽  
R. Ors

Leonardo ◽  
2012 ◽  
Vol 45 (4) ◽  
pp. 322-329 ◽  
Author(s):  
Byron Lahey ◽  
Winslow Burleson ◽  
Elizabeth Streb

Translation is a multimedia dance performed on a vertical wall filled with the projected image of a lunar surface. Pendaphonics is a low-cost, versatile, and robust motion-sensing hardware-software system integrated with the rigging of Translation to detect the dancers' motion and provide real-time control of the virtual moonscape. Replacing remotely triggered manual cues with high-resolution, real-time control by the performers expands the expressive range and ensures synchronization of feedback with the performers' movements. This project is the first application of an ongoing collaboration between the Motivational Environments Research Group at Arizona State University (ASU) and STREB Extreme Action Company.


Author(s):  
Ryan W. Krauss

Arduino microcontrollers are popular, low-cost, easy-to-program, and have an active user community. This paper seeks to quantitatively assess whether or not Arduinos are a good fit for real-time feedback control experiments and controls education. Bode plots and serial echo tests are used to assess the use of Arduinos in two scenarios: a prototyping mode that involves bidirectional real-time serial communication with a PC and a hybrid mode that streams data in real-time over serial. The closed-loop performance with the Arduino is comparable to that of another more complicated and more expensive microcontroller for the plant considered. Some practical tips on using an Arduino for real-time feedback control are also given.


2014 ◽  
Vol 16 (6) ◽  
pp. 1359-1374 ◽  
Author(s):  
Rebecca J. Austin ◽  
Albert S. Chen ◽  
Dragan A. Savić ◽  
Slobodan Djordjević

As urbanisation and climate change progress, the frequency of flooding will increase. Each flood event causes damage to infrastructure and the environment. It is thus important to minimise the damage caused, which can be done through planning for events, real-time control of networks and risk management. To perform these actions, many different simulations of network behaviour are required involving complex and computationally expensive model runs. This makes fast (i.e. real-time or repetitive) simulations very difficult to carry out using traditional methods, thus there is a requirement to develop computationally efficient and accurate conceptual sewer simulators. A new Cellular Automata (CA) based sewer model is presented which is both fast and accurate. The CA model is Lagrangian in nature in that it represents the flow as blocks, and movement of the blocks through the system is simulated. To determine the number of blocks which should be moved it uses either the Manning's or Hazen–Williams equation depending on the flow conditions to calculate the permitted discharge. A case study of the sewer network in Keighley, Yorkshire, is carried out showing its performance in comparison to traditional sewer simulators. The benchmarks used to verify the results are SIPSON and SWMM5.


2012 ◽  
Vol 614-615 ◽  
pp. 1562-1565
Author(s):  
Yu Sen Li ◽  
Ying Sun

In order to realize the sensor signal acquisition and analysis of data, according to data acquisition system design ideas of the PCI bus, applying to CPLD complex programmable controller and CH365 interface chip and combined with the actual needs of data collection ,designed a kind of low cost, high speed process controller. CPLD realizes data cache control and the control of reading. This design can gather 16 roads analog signals and real-time pulse signal of 8 roads on the same time, which includes a 16-bit digital output channel and a 32-bit counter, could be used in the real-time control.


Sign in / Sign up

Export Citation Format

Share Document