scholarly journals The Purdue Mechanics Freeform Classroom: A New Approach to Engineering Mechanics Education

2020 ◽  
Author(s):  
Jeffrey Rhoads ◽  
Eric Nauman ◽  
Beth Holloway ◽  
Charles Krousgrill
1987 ◽  
Vol 11 (3) ◽  
pp. 215-218
Author(s):  
Lia V. Brillhart ◽  
Gary Fisher ◽  
James G.R. Hansen

2008 ◽  
Vol 75 (6) ◽  
Author(s):  
Jin-Song Pei ◽  
Eric C. Mai

This paper presents a major step in the development and validation of a systematic prototype-based methodology for designing multilayer feedforward neural networks to model nonlinearities common in engineering mechanics. The applications of this work include (but are not limited to) system identification of nonlinear dynamic systems and neural-network-based damage detection. In this and previous studies (Pei, J. S., 2001, “Parametric and Nonparametric Identification of Nonlinear Systems,” Ph.D. thesis, Columbia University; Pei, J. S., and Smyth, A. W., 2006, “A New Approach to Design Multilayer Feedforward Neural Network Architecture in Modeling Nonlinear Restoring Forces. Part I: Formulation,” J. Eng. Mech., 132(12), pp. 1290–1300; Pei, J. S., and Smyth, A. W., 2006, “A New Approach to Design Multilayer Feedforward Neural Network Architecture in Modeling Nonlinear Restoring Forces. Part II: Applications,” J. Eng. Mech., 132(12), pp. 1301–1312; Pei, J. S., Wright, J. P., and Smyth, A. W., 2005, “Mapping Polynomial Fitting Into Feedforward Neural Networks for Modeling Nonlinear Dynamic Systems and Beyond,” Comput. Methods Appl. Mech. Eng., 194(42–44), pp. 4481–4505), the authors do not presume to provide a universal method to approximate any arbitrary function. Rather the focus is given to the development of a procedure which will consistently lead to successful approximations of nonlinear functions within the specified field. This is done by examining the dominant features of the function to be approximated and exploiting the strength of the sigmoidal basis function. As a result, a greater efficiency and understanding of both neural network architecture (e.g., the number of hidden nodes) as well as weight and bias values is achieved. Through the use of illuminating mathematical insights and a large number of training examples, this study demonstrates the simplicity, power, and versatility of the proposed prototype-based initialization methodology. A clear procedure for initializing neural networks to model various nonlinear functions commonly seen in engineering mechanics is provided. The proposed methodology is compared with the widely used Nguyen–Widrow initialization to demonstrate its robustness and efficiency in the specified applications. Future work is also identified.


1999 ◽  
Author(s):  
Toshio Itoh ◽  
Katsuhisa Ootsuta ◽  
Sadao Akishita

Author(s):  
Ernur Karadogan ◽  
Robert L. Williams ◽  
David R. Moore ◽  
Tian Luo

This paper presents the development efforts for a set of software activities and tutorials to augment teaching and learning in standard required undergraduate engineering mechanics courses. Using these software activities, students can change parameters, predict answers, compare outcomes, interact with animations, and feel the results. The overall system aims to increase teaching and learning effectiveness by rendering the concepts compelling, fun, and engaging. The problem with current examples and homework problems is that they are flat, static, boring, and non-engaging, which may lead to student attrition and a less than full grasp of fundamental principles. We implement integration of haptics technology with educational products to enable improvement in undergraduate engineering mechanics education. The current system is composed of a computer (laptop or desktop), a haptic device and a set of haptic modules. Currently, two modules, Interactive Free-Body Diagram (Box Motion) and Rigid Body Dynamics (Box Motion), were developed and several others are under development.


1999 ◽  
Vol 173 ◽  
pp. 185-188
Author(s):  
Gy. Szabó ◽  
K. Sárneczky ◽  
L.L. Kiss

AbstractA widely used tool in studying quasi-monoperiodic processes is the O–C diagram. This paper deals with the application of this diagram in minor planet studies. The main difference between our approach and the classical O–C diagram is that we transform the epoch (=time) dependence into the geocentric longitude domain. We outline a rotation modelling using this modified O–C and illustrate the abilities with detailed error analysis. The primary assumption, that the monotonity and the shape of this diagram is (almost) independent of the geometry of the asteroids is discussed and tested. The monotonity enables an unambiguous distinction between the prograde and retrograde rotation, thus the four-fold (or in some cases the two-fold) ambiguities can be avoided. This turned out to be the main advantage of the O–C examination. As an extension to the theoretical work, we present some preliminary results on 1727 Mette based on new CCD observations.


Author(s):  
V. Mizuhira ◽  
Y. Futaesaku

Previously we reported that tannic acid is a very effective fixative for proteins including polypeptides. Especially, in the cross section of microtubules, thirteen submits in A-tubule and eleven in B-tubule could be observed very clearly. An elastic fiber could be demonstrated very clearly, as an electron opaque, homogeneous fiber. However, tannic acid did not penetrate into the deep portion of the tissue-block. So we tried Catechin. This shows almost the same chemical natures as that of proteins, as tannic acid. Moreover, we thought that catechin should have two active-reaction sites, one is phenol,and the other is catechole. Catechole site should react with osmium, to make Os- black. Phenol-site should react with peroxidase existing perhydroxide.


Author(s):  
K. Chien ◽  
R. Van de Velde ◽  
I.P. Shintaku ◽  
A.F. Sassoon

Immunoelectron microscopy of neoplastic lymphoma cells is valuable for precise localization of surface antigens and identification of cell types. We have developed a new approach in which the immunohistochemical staining can be evaluated prior to embedding for EM and desired area subsequently selected for ultrathin sectioning.A freshly prepared lymphoma cell suspension is spun onto polylysine hydrobromide- coated glass slides by cytocentrifugation and immediately fixed without air drying in polylysine paraformaldehyde (PLP) fixative. After rinsing in PBS, slides are stained by a 3-step immunoperoxidase method. Cell monolayer is then fixed in buffered 3% glutaraldehyde prior to DAB reaction. After the DAB reaction step, wet monolayers can be examined under LM for presence of brown reaction product and selected monolayers then processed by routine methods for EM and embedded with the Chien Re-embedding Mold. After the polymerization, the epoxy blocks are easily separated from the glass slides by heatingon a 100°C hot plate for 20 seconds.


Sign in / Sign up

Export Citation Format

Share Document