scholarly journals Alternative Approach to Teaching Gas Turbine-based Power Cycles

2015 ◽  
Author(s):  
Farshid Zabihian

1982 ◽  
Vol 46 (3) ◽  
pp. 147-152 ◽  
Author(s):  
JG Hutton ◽  
RA Levy ◽  
HB Martin




2008 ◽  
pp. 1322-1329
Author(s):  
Peter P. Mykytyn

Colleges of business have dealt with teaching computer literacy and advanced computer application concepts for many years, often with much difficulty. Traditional approaches to provide this type of instruction, that is, teaching tool-related features in a lecture in a computer lab, may not be the best medium for this type of material. Indeed, textbook publishers struggle as they attempt to compile and organize appropriate material. Faculty responsible for these courses often find it difficult to satisfy students. This paper discusses problem-based learning (PBL) as an alternative approach to teaching computer application concepts, operationally defined herein as Microsoft Excel and Access, both very popular tools in use today. First, PBL is identified in general, and then we look at how it is developed and how it compares with more traditional instructional approaches. A scenario to be integrated into a semester-long course involving computer application concepts based on PBL is also presented. The paper concludes with suggestions for research and concluding remarks.



1968 ◽  
Vol 6 (3) ◽  
pp. 126-127
Author(s):  
Allan J. Schwartz


Author(s):  
Mohamed Gadalla ◽  
Nabil Al Aid

The purpose of this paper is to conduct a complete comparative, energy and 2nd low analyses between different types of fuel cells integrated with a gas turbine power plant. Different levels of modeling for the solid oxide fuel cell (SOFC), the proton exchange membrane fuel cell (PEMFC) and the integrated systems are to be presented. The overall system performance is analyzed by employing individual models and further applying energy and exergetic analyses for different configurations of gas turbine power cycles. The study includes applying different proposed methods and techniques to enhance the overall efficiency of the integrated cycle. After performing the complete technical management of the complete system, a comparative study between conventional and PEMFC and SOFC cycles is investigated to highlight the corresponding advantages and disadvantages of each system. The following systems are tested and evaluated: (a) Conventional Gas Turbine System with a combustion Chamber (b) Integrated SOFC Stack into a Gas Turbine System (c) The Proposed Integrated System with both SOFC and PEMFC.



2007 ◽  
Vol 160 (2) ◽  
pp. 233-243
Author(s):  
Yong Hoon Jeong ◽  
Mujid S. Kazimi


Author(s):  
W. H. Lee

The re-evaporation of Liquefied Natural Gas (LNG) is capable of acting as a low temperature heat sink for power cycles, thereby enhancing the thermal efficiency of the cycle. Leaving aside the detail of the appropriate heat exchanger technology, the comparative performance of improved high and low temperature closed cycle gas turbines is investigated using non-dimensionalized performance analysis. It was shown that the effect of lowering the minimum cycle temperature on the efficiency is equivalent to raising the maximum cycle temperature by a multiple amount. The specific output, however, decreases to a fraction of that achieved by the cycle with the original minimum cycle temperature. Implications are drawn for the application of the closed cycle gas turbine utilizing cryogenic cold.



2019 ◽  
Vol 29 ◽  
Author(s):  
SAVERIO PERUGINI

Abstract We challenge the idea that a course intended to convey principles of languages should be structured according to those principles, and present an alternate approach to teaching a programming language course. The approach involves teaching emerging programming languages. This approach results in a variety of course desiderata including scope for instructor customization; alignment with current trends in language evolution, practice, and research; and congruence with industrial needs. We discuss the rationale for, the course mechanics supporting, and the consequences of this approach.



Author(s):  
Ronan M. Kavanagh ◽  
Geoffrey T. Parks

The STIG, HAT and TOPHAT cycles lie at the centre of the debate on which humid power cycle will deliver optimal performance when applied to an aero-derivative gas turbine and, indeed, when such cycles will be implemented. Of these humid cycles, it has been claimed that the TOPHAT cycle has the highest efficiency and specific work, followed closely by the HAT (Humid Air Turbine) and then the STIG (STeam Injected Gas turbine) cycle. In this study, the systems have been simulated using consistent thermodynamic and economic models for the components and working fluid properties, allowing a consistent and non-biased appraisal of these systems. Part 1 of these two papers focussed on the thermodynamic performance and the impact of the system parameters on the performance, part 2 studies the economic performance of these cycles. The three humid power systems and up to ten system parameters are optimised using a multi-objective Tabu Search algorithm, developed in the Cambridge Engineering Design Centre.



Author(s):  
Daniele Fiaschi ◽  
Lidia Lombardi ◽  
Libero Tapinassi

The relatively innovative gas turbine based power cycles R-ATR and R-REF (Recuperative – Auto Thermal Reforming GT cycle and Recuperative – Reforming GT cycle) here proposed, are mainly aimed to allow the upstream CO2 removal by the natural gas fuel reforming. The 2nd part of the paper is dedicated to the R-REF cycle: the power unit is a Gas Turbine (GT), fuelled with reformed and CO2 cleaned gas, obtained by the addition of several sections to the simple GT cycle, mainly: • Reformer section (REF), where the reforming reactions of methane fuel with steam are accomplished: the necessary heat is supplied partially by the exhausts cooling and, partially, with a post–combustion. • Water Gas Shift Reactor (WGSR), where the reformed fuel is, shifted into CO2 and H2 with the addition of water. • CO2 removal unit for the CO2 capture from the reformed and shifted fuel. No water condensing section is adopted for the R-REF configuration. Between the main components, several heat recovery units are applied, together with GT Cycle recuperator, compressor intercooler and steam injection into the combustion chamber. The CO2 removal potential is close to 90% with chemical absorption by an accurate choice of amine solution blend: the heat demand for amine regeneration is completely self-sustained by the power cycle. The possibility of applying steam blade cooling (the steam is externally added) has been investigated: in these conditions, the RREF has shown efficiency levels close to 43–44%. High values of specific work have been observed as well (around 450–500 kJ/kg). The efficiency is slightly lower than that found for the R–ATR solution, and 2–3% lower than CRGTs with CO2 removal and steam bottoming cycle, not internally recuperated. If compared with these, the R-REF offers higher simplicity due to absence of the steam cycle, and can be regarded as an improvement to the simple GT. In this way, at least 5–6 points efficiency can be gained, together with high levels of CO2 removal. The effects of the reformed fuel gas composition, temperature and pressure on the amine absorption system for the CO2 removal have been investigated, showing the beneficial effects of increasing pressure (i.e. pressure ratio) on the specific heat demand.



Sign in / Sign up

Export Citation Format

Share Document