scholarly journals Relação entre os coeficientes α e γz para edifícios altos de concreto armado e alvenaria estrutural

Author(s):  
João Paulo Reis Menezes ◽  
Camila De Sousa Vieira ◽  
David Leonardo Nascimento de Figueiredo Amorim

<p class="Normal1">The inherent relation between the instability parameters α and γz is studied in this paper. Such parameters are simplified criteria widely used in structural design in Brazil to evaluate the necessity to consider the global second order effects. Thus, an analytical relation between the parameters α and γz is proposed through a simple example. For this, design values of α and γz of thirty reinforced concrete buildings and twenty-two masonry buildings were used. The obtained results prove the accuracy of the proposed formulation for both types of construction</p>

2017 ◽  
Vol 10 (2) ◽  
pp. 333-357
Author(s):  
D.M. OLIVEIRA ◽  
N.A. SILVA ◽  
C.C. RIBEIRO ◽  
S.E.C. RIBEIRO

Abstract In this paper the simplified method to evaluate final efforts using γ z coefficient is studied considering the variation of the second order effects with the height of the buildings. With this purpose, several reinforced concrete buildings of medium height are analyzed in first and second order using ANSYS software. Initially, it was checked that the (z coefficient should be used as magnifier of first order moments to evaluate final second order moments. Therefore, the study is developed considering the relation (final second order moments/ first order moments), calculated for each story of the structures. This moments relation is called magnifier of first order moments, "γ", and, in the ideal situation, it must coincide with the γ z value. However, it is observed that the reason γ /γ z varies with the height of the buildings. Furthermore, using an statistical analysis, it was checked that γ /γ z relation is generally lower than 1.05 and varies significantly in accordance with the considered building and with the presence or not of symmetry in the structure.


Author(s):  
Rodrigo Bezerra Andrade ◽  
Petrus Gorgônio Bulhões da Nóbrega

ABSTRACT: The internal forces due to torsion in global analysis of buildings, and its second-order effects, usually are not properly considered in structural design or even in design code’s prescriptions. Although the γZ coefficient, which is used to the evaluation of global second-order effects, has a wide, useful and consolidated application, it is true that specific torsional aspects are not well considered by it. This paper discusses the little-known γθ coefficient, an analogous proposition to the γZ coefficient, but focused specifically on the consideration of torsional effects. After the discussion on the concepts and the design methodology, several buildings are evaluated and their displacements and the coefficients γZ and γθ are calculated. Comparing these parameters, and also the results obtained by the P–Δ method, it is demonstrated the importance and the reliability of the γθ coefficient.


2019 ◽  
Vol 12 (2) ◽  
pp. 408-428 ◽  
Author(s):  
F. F. LEITÃO ◽  
G. H. SIQUEIRA ◽  
L. C. M. VIEIRA JR. ◽  
S. J. C. ALMEIDA

Abstract The χT parameter, a simplified method recently presented, allows to estimate the global second-order effects on reinforced concrete frames using the natural period of vibration. This parameter was developed based on the fact that both natural period of vibration and global second-order effects depend essentially on the stiffness and mass matrices of the structure, being thus related. In this paper, numerical analyses are conducted on nine models with different patterns of irregularity in terms of geometry in plan and stiffness. The main purpose of these analyses is to evaluate the applicability of the χT parameter in asymmetric structures as well as that can present torsional modes as the fundamental mode of vibration. In addition, different hypotheses are tested in order to verify the influence of the different modes of vibration in the structural sensitivity to global second-order effects. Results of the simplified analyses were compared to the final bending moment values obtained through a nonlinear numerical analysis considering the P-Δ effect. It is observed that the parameter χT is a promising indicator for a simplified estimation of the global second-order effects for concrete frames, especially when higher modes of vibration are taken account in the analysis.


2018 ◽  
Vol 18 (05) ◽  
pp. 1850074 ◽  
Author(s):  
Daniel G. Reis ◽  
Gustavo H. Siqueira ◽  
Luiz C. M. Vieira ◽  
Ronald D. Ziemian

Recent studies have demonstrated the existence of a relationship between a structures susceptibility to second-order effects and its natural period of vibration ([Formula: see text]) given that both these properties are fundamentally dependent on the structure stiffness and mass properties. The main advantage of the use of this characteristic is that [Formula: see text] can be obtained easily by the existing structural analysis software. In this study, different formulations are developed in order to propose an amplification factor ([Formula: see text]) to multiply first-order analysis results and satisfactorily obtain results of a second-order analysis. These formulations are based on D’Alembert’s principle, Rayleighs method, and the use of generalized coordinates to represent the dynamic displacement of flexible structures. It is observed that [Formula: see text] provides values closer to and in fact, more conservatively than, those obtained by the conventional simplified methods currently used by structural design engineers. Thus, the amplification factor [Formula: see text], which is based on the natural period of vibration, is proposed to be used as (i) an indicator of a structure susceptibility to second-order effects and (ii) an amplification factor to describe the second-order effects on reinforced concrete frames.


2017 ◽  
Vol 10 (5) ◽  
pp. 1113-1140 ◽  
Author(s):  
V. V. S. VIEIRA ◽  
S. J. RODRIGUES JUNIOR ◽  
L. A. C. M. VELOSO

Abstract Global stability analysis is becoming increasingly important in the design of reinforced concrete buildings, especially in the slender ones, due its sensitivity to lateral displacement. The loss of stability is usually associated with the intensity of the second order effects and, in that sense, the gamma-z (γz) coefficient is an important evaluation parameter for this problem. This work aims to verify the γz efficiency as a global stability parameter based on the buckling load factors of the structures and their respective critical buckling modes. To this purpose, a comparative analysis is performed in several idealized structures, from which an approximate equation for calculating the critical load factor based on the γz coefficient is obtained. This equation was verified by numerical analysis of Finite Elements Method models of real reinforced concrete buildings. It was concluded that the proposed equation presents satisfying results within a certain range of γz.


2013 ◽  
Vol 6 (1) ◽  
pp. 75-100
Author(s):  
D. M. Oliveira ◽  
N. A. Silva ◽  
C. F. Bremer ◽  
H. Inoue

In this work, the γz coefficient, used to evaluate final second order effects in reinforced concrete structures, is studied. At the start, the influence of the structural model in determination of γz coefficient is evaluated. Next, a comparative analysis of γz and B2 coefficient, usually employed to evaluate second order effects in steel structures, is performed. In order to develop the study, several reinforced concrete buildings of medium height are analysed using ANSYS-9.0 [1] software. The results show that simplified analysis provide more conservative values of γz. It means that, for structures analysed by simplified models, large values of γz don't imply, necessarily, in significant second order effects. Furthermore, it was checked that γz can be determinated from B2 coefficients of each storey of the structures and that, for all the analysed buildings, the average values of the B2 coefficients are similar to γz.


2012 ◽  
Vol 5 (4) ◽  
pp. 548-554 ◽  
Author(s):  
J. M. Calixto ◽  
T. H. Souza ◽  
E. V. Maia

Reinforced concrete codes worldwide establish that the design of slender columns must ensure that under the most unfavorable load combination, there is neither instability nor material failures. Thus, it is mandatory to consider material as well as geometrical nonlinearities. The consideration of second order effects can be done using simplified methods or the general method. This work analyses second order effects based on the approximate methods shown in NBR 6118 [1]: approximate curvature method and approximate stiffness procedure. Due to the importance of the columns in the stability of buildings is essential that these simplified design methods provide safe solutions for the design of columns. In this scenario, the objective of this study is to evaluate these simplified design procedures in terms of safety, precision and economy with respect to test results of RC slender columns subjected to eccentric loads found in the literature. The comparative analysis reveals that the approximate stiffness procedure provides better results.


Author(s):  
Agus Setiawan

In terms of structural design of reinforced concrete buildings for earthquake-resistant, the beamcolumn joint is a critical area that needs to be accurately designed properly so that the area is able to dissipate energy in the event of an earthquake. The ability of beam-column joint to deform in the inelastic region provides a structure that has a good ductility, so as to minimize the damage caused by earthquake shaking. This study aims to analyze the design of beam-column connection at the Parliament Building-City Hall of Jakarta. The analysis performed refers to the ”Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung”, SNI 03-2847-2002. The analysis results shows that the terms of detailing in the field implementation have not been fulfilled properly.


Sign in / Sign up

Export Citation Format

Share Document