scholarly journals Detection and Classification of Potato Diseases Potato Using a New Convolution Neural Network Architecture

2021 ◽  
Vol 38 (6) ◽  
pp. 1783-1791
Author(s):  
Ali Arshaghi ◽  
Mohsen Ashourin ◽  
Leila Ghabeli

Using machine vision and image processing as a non-destructive and rapid method can play an important role in examining defects of agricultural products, especially potatoes. In this paper, we propose a convolution neural network (CNN) to classify the diseased potato into five classes based on their surface image. We trained and tested the developed CNN using a database of 5000 potato images. We compared the results of potato defect classification based on CNN with the traditional neural network and Support Vector Machine (SVM). The results show that the accuracy of the deep learning method is higher than the Traditional Method. We get 100% and 99% accuracy in some of the classes, respectively.

2020 ◽  
pp. 104-117
Author(s):  
O.S. Amosov ◽  
◽  
S.G. Amosova ◽  
D.S. Magola ◽  
◽  
...  

The task of multiclass network classification of computer attacks is given. The applicability of deep neural network technology in problem solving has been considered. Deep neural network architecture was chosen based on the strategy of combining a set of convolution and recurrence LSTM layers. Op-timization of neural network parameters based on genetic algorithm is proposed. The presented results of modeling show the possibility of solving the network classification problem in real time.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yinjie Xie ◽  
Wenxin Dai ◽  
Zhenxin Hu ◽  
Yijing Liu ◽  
Chuan Li ◽  
...  

Among many improved convolutional neural network (CNN) architectures in the optical image classification, only a few were applied in synthetic aperture radar (SAR) automatic target recognition (ATR). One main reason is that direct transfer of these advanced architectures for the optical images to the SAR images easily yields overfitting due to its limited data set and less features relative to the optical images. Thus, based on the characteristics of the SAR image, we proposed a novel deep convolutional neural network architecture named umbrella. Its framework consists of two alternate CNN-layer blocks. One block is a fusion of six 3-layer paths, which is used to extract diverse level features from different convolution layers. The other block is composed of convolution layers and pooling layers are mainly utilized to reduce dimensions and extract hierarchical feature information. The combination of the two blocks could extract rich features from different spatial scale and simultaneously alleviate overfitting. The performance of the umbrella model was validated by the Moving and Stationary Target Acquisition and Recognition (MSTAR) benchmark data set. This architecture could achieve higher than 99% accuracy for the classification of 10-class targets and higher than 96% accuracy for the classification of 8 variants of the T72 tank, even in the case of diverse positions located by targets. The accuracy of our umbrella is superior to the current networks applied in the classification of MSTAR. The result shows that the umbrella architecture possesses a very robust generalization capability and will be potential for SAR-ART.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francisco J. Bravo Sanchez ◽  
Md Rahat Hossain ◽  
Nathan B. English ◽  
Steven T. Moore

AbstractThe use of autonomous recordings of animal sounds to detect species is a popular conservation tool, constantly improving in fidelity as audio hardware and software evolves. Current classification algorithms utilise sound features extracted from the recording rather than the sound itself, with varying degrees of success. Neural networks that learn directly from the raw sound waveforms have been implemented in human speech recognition but the requirements of detailed labelled data have limited their use in bioacoustics. Here we test SincNet, an efficient neural network architecture that learns from the raw waveform using sinc-based filters. Results using an off-the-shelf implementation of SincNet on a publicly available bird sound dataset (NIPS4Bplus) show that the neural network rapidly converged reaching accuracies of over 65% with limited data. Their performance is comparable with traditional methods after hyperparameter tuning but they are more efficient. Learning directly from the raw waveform allows the algorithm to select automatically those elements of the sound that are best suited for the task, bypassing the onerous task of selecting feature extraction techniques and reducing possible biases. We use publicly released code and datasets to encourage others to replicate our results and to apply SincNet to their own datasets; and we review possible enhancements in the hope that algorithms that learn from the raw waveform will become useful bioacoustic tools.


Author(s):  
Krasimir Ognyanov Slavyanov

This article offers a neural network method for automatic classification of Inverse Synthetic Aperture Radar objects represented in images with high level of post-receive optimization. A full explanation of the procedures of two-layer neural network architecture creating and training is described. The classification in the recognition stage is proposed, based on several main classes or sets of flying objects. The classification sets are designed according to distinctive specifications in the structural models of the aircrafts. The neural network is experimentally simulated in MATLAB environment. Numerical results of the experiments carried, prove the correct classification of the objects in ISAR optimized images.


2022 ◽  
Vol 41 (1) ◽  
pp. 1-21
Author(s):  
Chems-Eddine Himeur ◽  
Thibault Lejemble ◽  
Thomas Pellegrini ◽  
Mathias Paulin ◽  
Loic Barthe ◽  
...  

In recent years, Convolutional Neural Networks (CNN) have proven to be efficient analysis tools for processing point clouds, e.g., for reconstruction, segmentation, and classification. In this article, we focus on the classification of edges in point clouds, where both edges and their surrounding are described. We propose a new parameterization adding to each point a set of differential information on its surrounding shape reconstructed at different scales. These parameters, stored in a Scale-Space Matrix (SSM) , provide a well-suited information from which an adequate neural network can learn the description of edges and use it to efficiently detect them in acquired point clouds. After successfully applying a multi-scale CNN on SSMs for the efficient classification of edges and their neighborhood, we propose a new lightweight neural network architecture outperforming the CNN in learning time, processing time, and classification capabilities. Our architecture is compact, requires small learning sets, is very fast to train, and classifies millions of points in seconds.


Sign in / Sign up

Export Citation Format

Share Document