scholarly journals Composition of water sources and transformation relationship between surface water and groundwater in the Fenhe River estuarine wetland of the middle Yellow River

2022 ◽  
Vol 34 (1) ◽  
pp. 247-261
Author(s):  
Xu Xiuli ◽  
◽  
Li Yunliang ◽  
Gao Bo ◽  
Zhang Yongbo
Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1671 ◽  
Author(s):  
Dong Zhang ◽  
Dongmei Han ◽  
Xianfang Song

Sanmenxia Dam, one of the most controversial water conservancy projects in China, has seriously impacted the lower Weihe River of the Yellow River Watershed since its operation. At the Huaxian Station, the dam operation controls the surface water level and leads to the variation of the surface water–groundwater interaction relationship. The river channel switched from a losing reach during the early stage (1959) to a gaining reach in 2010 eventually. The comparison of tracer (Cl−, δ18O and δ2H) characteristics of surface water in successive reaches with that of ambient groundwater shows that the general interaction condition is obviously affected by the dam operation and the impact area can be tracked back to Weinan City, around 65 km upstream of the estuary of the Weihe River. The anthropogenic inputs (i.e., agricultural fertilizer application, wastewater discharge, and rural industrial sewage) could be responsible for the deterioration of hydro-environment during the investigation periods of 2015 and 2016, as the population and fertilizer consumption escalated in the last 60 years. The use of contaminated river water for irrigation, along with the dissolved fertilizer inputs, can affect the groundwater quality, in particular resulting in the NO3− concentrations ranging from 139.4 to 374.1 mg/L. The unregulated industrial inputs in some rural areas may increase the Cl− contents in groundwater ranging from 298.4 to 472.9 mg/L. The findings are helpful for the improved comprehensive understanding of impacts of the Sanmenxia Dam on the interaction between surface water and groundwater, and for improving local water resources management.


2014 ◽  
Vol 16 (12) ◽  
pp. 2764-2773 ◽  
Author(s):  
Jing Li ◽  
Fadong Li ◽  
Qiang Liu ◽  
Yoshimi Suzuki

The yellow river irrigation practice was a critical factor impacting the spatial distribution of nitrate in surface water and groundwater in a yellow river alluvial fan.


2016 ◽  
Vol 47 (6) ◽  
pp. 1253-1262 ◽  
Author(s):  
M. J. Zheng ◽  
C. W. Wan ◽  
M. D. Du ◽  
X. D. Zhou ◽  
P. Yi ◽  
...  

A pioneering rapid and direct measurement of dissolved 222Rn in the field has been used here to explore interaction between surface and groundwater in the source area of the Yellow River (SAYR). The results indicate average 222Rn activity of 2,371 Bq/m3 in surface water and 27,835 Bq/m3 in groundwater. The high 222Rn activity (up to 9,133 Bq/m3) found in the southeast part of the SAYR suggests possible influence of permafrost on the exchange between surface water and groundwater. The remarkable contrast among the different samples of a stream in the Shuangchagou basin, a typical basin in the SAYR, clearly indicates groundwater infiltration along the north tributary and occurrence of groundwater end-member in the south tributary. Considering no 222Rn decay and atmospheric evasion, the daily average fraction of groundwater input to the surface water through the end-member in a location (S1) is estimated at 19%. Despite the up to 40% uncertainty, this is the first estimate of a reference value for groundwater input in this basin and which can be improved in the future with more samples and measurements. 222Rn can be a rapid and easily measured tracer of surface water–groundwater interaction for future investigation in the Qinghai-Tibet Plateau.


2013 ◽  
Vol 21 (4) ◽  
pp. 487 ◽  
Author(s):  
Fang ZHANG ◽  
Fa-Dong LI ◽  
Jing LI ◽  
Shuai SONG ◽  
Wen-Jing CAI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document