scholarly journals Impacts of the Sanmenxia Dam on the Interaction between Surface Water and Groundwater in the Lower Weihe River of Yellow River Watershed

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1671 ◽  
Author(s):  
Dong Zhang ◽  
Dongmei Han ◽  
Xianfang Song

Sanmenxia Dam, one of the most controversial water conservancy projects in China, has seriously impacted the lower Weihe River of the Yellow River Watershed since its operation. At the Huaxian Station, the dam operation controls the surface water level and leads to the variation of the surface water–groundwater interaction relationship. The river channel switched from a losing reach during the early stage (1959) to a gaining reach in 2010 eventually. The comparison of tracer (Cl−, δ18O and δ2H) characteristics of surface water in successive reaches with that of ambient groundwater shows that the general interaction condition is obviously affected by the dam operation and the impact area can be tracked back to Weinan City, around 65 km upstream of the estuary of the Weihe River. The anthropogenic inputs (i.e., agricultural fertilizer application, wastewater discharge, and rural industrial sewage) could be responsible for the deterioration of hydro-environment during the investigation periods of 2015 and 2016, as the population and fertilizer consumption escalated in the last 60 years. The use of contaminated river water for irrigation, along with the dissolved fertilizer inputs, can affect the groundwater quality, in particular resulting in the NO3− concentrations ranging from 139.4 to 374.1 mg/L. The unregulated industrial inputs in some rural areas may increase the Cl− contents in groundwater ranging from 298.4 to 472.9 mg/L. The findings are helpful for the improved comprehensive understanding of impacts of the Sanmenxia Dam on the interaction between surface water and groundwater, and for improving local water resources management.

2016 ◽  
Vol 211 ◽  
pp. 124-131 ◽  
Author(s):  
Shu Chen ◽  
Xing-Chun Jiao ◽  
Nan Gai ◽  
Xiao-Jie Li ◽  
Xiao-Chun Wang ◽  
...  

2014 ◽  
Vol 16 (12) ◽  
pp. 2764-2773 ◽  
Author(s):  
Jing Li ◽  
Fadong Li ◽  
Qiang Liu ◽  
Yoshimi Suzuki

The yellow river irrigation practice was a critical factor impacting the spatial distribution of nitrate in surface water and groundwater in a yellow river alluvial fan.


2017 ◽  
Vol 13 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Piotr Hulisz ◽  
Arkadiusz Krawiec ◽  
Sylwia Pindral ◽  
Łukasz Mendyk ◽  
Kamila Pawlikowska

AbstractThe article presents the influence of natural and anthropogenic factors on the chemical and physical properties of surface water and groundwater in the area of the city of Inowrocław. It has been shown that the properties of the waters were most strongly affected by the specific geological structure (the city is located within the Zechstein salt dome) as well as the long-term influence of a salt mine and soda plant. The composition of most analysed samples was dominated by Ca2+, Na+and Cl−ions. In places of heavy industrial activity, some water parameters were several time higher than permissible limit values according to Polish standards. It is concluded that, due to the threat to the city’s drinking groundwater resources and fertile soils, the surface water and groundwater in the area in question require permanent monitoring.


2017 ◽  
Author(s):  
Jihong Qu ◽  
Shibao Lu ◽  
Zhipeng Gao ◽  
Wujin Li ◽  
Zhiping Li ◽  
...  

Abstract. The transforming relationship between surface water and groundwater as well as their origins are the basis for studying the transport of pollutants in river-groundwater systems. A typical section of the river was chosen to sample the surface water and shallow groundwater. Then, a Piper trilinear diagram, Gibbs diagram, ratios of major ions, factor analysis, cluster analysis and other methods were used to investigate the hydrogeochemical evolution of surface water and groundwater and determine the formation of hydrogeochemical components in different water bodies. Based on the distribution characteristics of hydrogen and oxygen stable isotopes δD and δ18O and discharge hydrograph separation methods, the relationship between surface water and groundwater in the Weihe River was analyzed. The results indicated that the river water is a SO4·Cl—Na type and that the groundwater hydrogeochemical types are not the same. The dominant anions are HCO3− in the upstream reaches and are SO42− and Cl− in downstream reaches. Hydrogeochemical processes include evaporation and concentration, weathering of rocks, ion exchange, and dissolution infiltration reactions. The δD and δ18O of surface water change little along the river and are more enriched than are those of the groundwater. With the influences of precipitation, irrigation, river recharge and evaporation, the δD and δ18O of shallow groundwater at different sections are not the same. There is a close relationship between the surface water and groundwater. Surface water supplies the groundwater, which provides the hydrodynamic conditions for the entry of pollutants into the aquifer.


2021 ◽  
Author(s):  
Eliot Sicaud ◽  
Jan Franssen ◽  
Jean-Pierre Dedieu ◽  
Daniel Fortier

<p>For remote and vast northern watersheds, hydrological data are often sparse and incomplete. Fortunately, remote sensing approaches can provide considerable information about the structural properties of watersheds, which is useful for the indirect assessment of their hydrological characteristics and behavior. Our main objective is to produce a high-resolution territorial clustering based on key hydrologic landscape metrics for the entire 42 000 km<sup>2</sup> George River watershed (GRW), located in Nunavik, northern Québec (Canada). This project is being conducted in partnership with the local Inuit communities of the GRW for the purpose of generating and sharing knowledge to anticipate the impact of climate and socio-environmental change in the GRW.</p><p>Our clustering approach employs Unsupervised Geographic Object-Based Image Analysis (GeOBIA) applied to the entire GRW with the subwatersheds as our objects of analysis. The landscape metric datasets used to generate the input variables of our GeOBIA classification are raster layers with a 30m x 30m pixel resolution. Topographic metrics are derived from a Digital Elevation Model (DEM) and include elevation, slopes, aspect, drainage density and watershed elongation. Land cover spectral metrics comprised in our analysis are the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Moisture Index (NDMI) (Gao, 1996) and the Normalized Difference Water Index (NDWI) (McFeeters, 1996), which are all computed from a Landsat-8 cloud-free surface reflectance mosaic dating from 2015. Rasterized maps of surface deposit distribution and permafrost distribution, both produced by the Ministère des Forêts, de la Faune et des Parcs of Québec (MFFP), respectively constitute the surface and subsurface metrics of our GeOBIA.</p><p>The clustering algorithm used in this Unsupervised GeOBIA is the Fuzzy C-Means (FCM) algorithm. The FCM algorithm provides the objects a set of membership coefficients corresponding to each cluster. The greatest membership coefficient is then used to attribute the distinct subwatersheds to a cluster of watersheds with similar hydro-geomorphometric characteristics. The classification returns a Fuzzy Partition Coefficient (FPC), which describes how well-partitioned our dataset is. The FPC can vary greatly depending on the number of clusters we want to produce. Thus, we find the optimal number of clusters by maximizing the FPC.</p><p>Preliminary clustering results, computed only with topographic and land cover metrics, have identified two distinct watershed classes/clusters. In general, “Type 1” subwatersheds are clustered over the southern and northwestern portion of the GRW and are characterized by low to moderate elevation, high vegetation cover, high moisture and high surface water cover. Whereas “Type 2” subwatersheds located over the northeastern portion of the GRW are characterized by high elevation, low vegetation cover, low moisture and low surface water cover. These results will be refined with the use of additional metrics and will provide the detailed understanding necessary to assess how the hydrological regime of the river and its tributaries will respond to climate change, and how landscape change and human activities (e.g., planned mining development) may impact the water quality of the George River and its tributaries.</p>


2016 ◽  
Vol 47 (6) ◽  
pp. 1253-1262 ◽  
Author(s):  
M. J. Zheng ◽  
C. W. Wan ◽  
M. D. Du ◽  
X. D. Zhou ◽  
P. Yi ◽  
...  

A pioneering rapid and direct measurement of dissolved 222Rn in the field has been used here to explore interaction between surface and groundwater in the source area of the Yellow River (SAYR). The results indicate average 222Rn activity of 2,371 Bq/m3 in surface water and 27,835 Bq/m3 in groundwater. The high 222Rn activity (up to 9,133 Bq/m3) found in the southeast part of the SAYR suggests possible influence of permafrost on the exchange between surface water and groundwater. The remarkable contrast among the different samples of a stream in the Shuangchagou basin, a typical basin in the SAYR, clearly indicates groundwater infiltration along the north tributary and occurrence of groundwater end-member in the south tributary. Considering no 222Rn decay and atmospheric evasion, the daily average fraction of groundwater input to the surface water through the end-member in a location (S1) is estimated at 19%. Despite the up to 40% uncertainty, this is the first estimate of a reference value for groundwater input in this basin and which can be improved in the future with more samples and measurements. 222Rn can be a rapid and easily measured tracer of surface water–groundwater interaction for future investigation in the Qinghai-Tibet Plateau.


2009 ◽  
Vol 59 (11) ◽  
pp. 2167-2178
Author(s):  
Seo Jin Ki ◽  
Joo-Hyon Kang ◽  
Young Geun Lee ◽  
Yun Seok Lee ◽  
Suthipong Sthiannopkao ◽  
...  

Comprehensive water quality monitoring was conducted to assess the water quality conditions and to determine the impact of urban infrastructure on ambient water quality in Angkor, Cambodia. During this study, surface water, groundwater, and sediment samples were collected for two distinctive seasons in 2006–2007 at 58 monitoring sites along and near the Siem Reap River, in Tole Sap Lake (TSL), and West Baray, the primary water resources in this region. To assess the seasonal and spatial variability of 27 water quality parameters, multivariate analysis of variance, hierarchical cluster analysis, and the Kruskal-Wallis test were conducted using the obtained data. Differences and relationships between the surface water and groundwater were also investigated using t-test and correlation analysis, respectively. The results of these tests showed that the bacterial indicators need special attention as the urban infrastructure of the downtown area caused increased levels of these bacterial indicators in both surface water and groundwater. However, for most parameters, though surface water showed strong seasonal variations, groundwater presented relatively stable conditions between seasons (p>0.05) with site-specific geochemical conditions. Sediment quality illustrated that pollution levels of 10 trace metals were the highest in TSL because of its unique characteristic (river with backward flow), but did not reflect any potential enrichment from urban development. Overall, the results reveal that while the urban infrastructure in this region has not significantly affected most of the water quality parameters, bacteria and coliphages are still a main concern due to their contributions in widespread waterborne diseases. Thus, careful mitigation plans for reducing each pollutant source are needed in the Angkor area.


Sign in / Sign up

Export Citation Format

Share Document