scholarly journals Glucoamylase production from food waste by solid state fermentation and its evaluation in the hydrolysis of domestic food waste

2014 ◽  
pp. 98-105 ◽  
Author(s):  
Esra Uçkun Kiran ◽  
Antoine P. Trzcinski ◽  
Yu Liu
2021 ◽  
Vol 9 (5) ◽  
pp. 895
Author(s):  
Carlotta Alias ◽  
Daniela Bulgari ◽  
Fabjola Bilo ◽  
Laura Borgese ◽  
Alessandra Gianoncelli ◽  
...  

A low-energy paradigm was adopted for sustainable, affordable, and effective urban waste valorization. Here a new, eco-designed, solid-state fermentation process is presented to obtain some useful bio-products by recycling of different wastes. Urban food waste and scraps from trimmings were used as a substrate for the production of citric acid (CA) by solid state fermentation of Aspergillus niger NRRL 334, with a yield of 20.50 mg of CA per gram of substrate. The acid solution was used to extract metals from waste printed circuit boards (WPCBs), one of the most common electronic waste. The leaching activity of the biological solution is comparable to a commercial CA one. Sn and Fe were the most leached metals (404.09 and 67.99 mg/L, respectively), followed by Ni and Zn (4.55 and 1.92 mg/L) without any pre-treatments as usually performed. Commercial CA extracted Fe more efficiently than the organic one (123.46 vs. 67.99 mg/L); vice versa, biological organic CA recovered Ni better than commercial CA (4.55 vs. 1.54 mg/L). This is the first approach that allows the extraction of metals from WPCBs through CA produced by A. niger directly grown on waste material without any sugar supplement. This “green” process could be an alternative for the recovery of valuable metals such as Fe, Pb, and Ni from electronic waste.


2014 ◽  
Vol 174 (5) ◽  
pp. 1859-1872 ◽  
Author(s):  
Nayeli Ávila-Cisneros ◽  
Susana Velasco-Lozano ◽  
Sergio Huerta-Ochoa ◽  
Jesús Córdova-López ◽  
Miquel Gimeno ◽  
...  

2018 ◽  
Vol 37 (2) ◽  
pp. 149-156 ◽  
Author(s):  
C. Marzo ◽  
A.B. Díaz ◽  
I. Caro ◽  
A. Blandino

Nowadays, significant amounts of agro-industrial wastes are discarded by industries; however, they represent interesting raw materials for the production of high-added value products. In this regard, orange peels (ORA) and exhausted sugar beet cossettes (ESBC) have turned out to be promising raw materials for hydrolytic enzymes production by solid state fermentation (SSF) and also a source of sugars which could be fermented to different high-added value products. The maximum activities of xylanase and exo-polygalacturonase (exo-PG) measured in the enzymatic extracts obtained after the SSF of ORA were 31,000 U·kg-1 and 17,600 U·kg-1, respectively; while for ESBC the maximum values reached were 35,000 U·kg-1 and 28,000 U·kg-1, respectively. The enzymatic extracts obtained in the SSF experiments were also employed for the hydrolysis of ORA and ESBC. Furthermore, it was found that extracts obtained from SSF of ORA, supplemented with commercial cellulase, were more efficient for the hydrolysis of ORA and ESBC than a commercial enzyme cocktail typically used for this purpose. In this case, maximum reducing sugars concentrations of 57 and 47 g·L-1 were measured after the enzymatic hydrolysis of ESBC and ORA, respectively.


Fermentation ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 52 ◽  
Author(s):  
Yong Xing Tan ◽  
Wai Kit Mok ◽  
Jaslyn Lee ◽  
Jaejung Kim ◽  
Wei Ning Chen

Brewers’ spent grains (BSG) are underutilized food waste materials produced in large quantities from the brewing industry. In this study, solid state fermentation of BSG using Bacillus subtilis WX-17 was carried out to improve the nutritional value of BSG. Fermenting BSG with the strain WX-17, isolated from commercial natto, significantly enhanced the nutritional content in BSG compared to unfermented BSG, as determined by the marked difference in the level of metabolites. In total, 35 metabolites showed significant difference, which could be categorized into amino acids, fatty acids, carbohydrates, and tricarboxylic acid cycle intermediates. Pathway analysis revealed that glycolysis was upregulated, as indicated by the drop in the level of carbohydrate compounds. This shifted the metabolic flux particularly towards the amino acid pathway, leading to a 2-fold increase in the total amount of amino acid from 0.859 ± 0.05 to 1.894 ± 0.1 mg per g of BSG after fermentation. Also, the total amount of unsaturated fatty acid increased by 1.7 times and the total antioxidant quantity remarkably increased by 5.8 times after fermentation. This study demonstrates that novel fermentation processes can value-add food by-products, and valorized food waste could potentially be used for food-related applications. In addition, the study revealed the metabolic changes and mechanisms behind the microbial solid state fermentation of BSG.


2008 ◽  
Vol 37 (3) ◽  
pp. 207-215 ◽  
Author(s):  
Hiroaki HONDA ◽  
Akihiro OHNISHI ◽  
Naoshi FUJIMOTO ◽  
Masaharu SUZUKI

Sign in / Sign up

Export Citation Format

Share Document