scholarly journals DNA interaction with biologically active metal ions. Cooperativity of metal ion binding at compacting of DNA.

1998 ◽  
Vol 45 (1) ◽  
pp. 107-117 ◽  
Author(s):  
S Kornilova ◽  
E Hackl ◽  
L Kapinos ◽  
V Andrushchenko ◽  
Y Blagoi

The interaction of Cu2+, Mn2+ and Ca2+ ions with DNA in aqueous and water-ethanol solutions at different metal ion concentrations was studied by IR-spectroscopy. At sufficiently high DNA concentrations, DNA interaction with Cu2+, Ca2+ and Mn2+ ions results in compacting of DNA in the aqueous solutions. This process shows a very high cooperativity. In the presence of alcohol, DNA condensation takes place at much lower concentrations of metal ions used than in pure aqueous solution. Binding constants and cooperativity of the metal ion binding rise, and the non-monotonous dependencies of the binding degree, r, on the concentration of free metal ions, Cf, become pronounced. Binding isotherms take the S-like form similar to van der Waals isotherms for phase transitions of the liquid-vapour type. Cu2+ and Ca2+ ion binding to DNA in water-ethanol solutions also results in compacting of DNA macromolecule. The process is characterised by a high positive cooperativity and has a phase transition character.

1983 ◽  
Vol 61 (12) ◽  
pp. 2740-2744 ◽  
Author(s):  
Isao Yoshida ◽  
Ichiro Murase ◽  
Ramunas J. Motekaitis ◽  
Arthur E. Martell

Synthesis of a new tris-bidentate multidentate ligand, N,N′,N″-tris[2-(N-hydroxycarbamoyl)ethyl]-1,3,5-benzenetricarboxamide (BAMTPH), designed for the binding of trivalent metal ions such as Fe(III), Ga(III), and Al(III), is described. Its cation binding affinities for hydrogen ion and for Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ga(III), and Al(III) ions are described, and the equilibrium data are compared with those of analogous ligands. The binding constants of trivalent metal ions with the ligand do not show a chelate effect relative to the binding to individual bidentate hydroxamic acids.


1989 ◽  
Vol 67 (11-12) ◽  
pp. 808-812 ◽  
Author(s):  
John J. Robinson

The interaction of metal ions with the sea urchin extraembryonic coat protein hyalin was investigated. Hyalin, immobilized on nitrocellulose membrane, bound Ca2+ and this interaction was disrupted by ruthenium red and selective metal ions. The divalent cations Cd2+ and Mn2+, when present at a concentration of 30 μM, displaced hyalin-bound Ca2+. In competition assays, 1 mM Cd2+ or 3 mM Mn2+ were effective competitors with Ca2+ for binding to hyalin. Cobalt, at a concentration of 30 μM, was unable to displace protein-bound Ca2+, but was effective in competition assays at a concentration of at least 10 mM. Magnesium and the monovalent cation Cs+ were unable to disrupt Ca2+–hyalin interaction. Interestingly, Cd2+, Mn2+, and Co2+ mimicked the biological effects of Ca2+ on the hyalin self-association reaction. These results clearly demonstrate that the Ca2+-binding sites on hyalin can selectively accommodate other divalent cations in a biologically active configuration.Key words: calcium, metal ion, binding, hyalin.


2016 ◽  
Vol 18 (32) ◽  
pp. 22254-22265 ◽  
Author(s):  
Manuel Hitzenberger ◽  
Thomas S. Hofer

The interaction of metal ions with Shh binding-sites and their structural impact are assessed via classical and quantum mechanical simulations.


2006 ◽  
Vol 400 (3) ◽  
pp. 385-392 ◽  
Author(s):  
Erdeni Bai ◽  
Federico I. Rosell ◽  
Bao Lige ◽  
Marcia R. Mauk ◽  
Barbara Lelj-Garolla ◽  
...  

The functional properties of the recombinant C-terminal dimerization domain of the Pseudomonas aeruginosa Fur (ferric uptake regulator) protein expressed in and purified from Escherichia coli have been evaluated. Sedimentation velocity measurements demonstrate that this domain is dimeric, and the UV CD spectrum is consistent with a secondary structure similar to that observed for the corresponding region of the crystallographically characterized wild-type protein. The thermal stability of the domain as determined by CD spectroscopy decreases significantly as pH is increased and increases significantly as metal ions are added. Potentiometric titrations (pH 6.5) establish that the domain possesses a high-affinity and a low-affinity binding site for metal ions. The high-affinity (sensory) binding site demonstrates association constants (KA) of 10(±7)×106, 5.7(±3)×106, 2.0(±2)×106 and 2.0(±3)×104 M−1 for Ni2+, Zn2+, Co2+ and Mn2+ respectively, while the low-affinity (structural) site exhibits association constants of 1.3(±2)×106, 3.2(±2)×104, 1.76(±1)×105 and 1.5(±2)×103 M−1 respectively for the same metal ions (pH 6.5, 300 mM NaCl, 25 °C). The stability of metal ion binding to the sensory site follows the Irving–Williams order, while metal ion binding to the partial sensory site present in the domain does not. Fluorescence experiments indicate that the quenching resulting from binding of Co2+ is reversed by subsequent titration with Zn2+. We conclude that the domain is a reasonable model for many properties of the full-length protein and is amenable to some analyses that the limited solubility of the full-length protein prevents.


RSC Advances ◽  
2016 ◽  
Vol 6 (91) ◽  
pp. 88010-88029 ◽  
Author(s):  
Gunjan Agarwal ◽  
Dipali N. Lande ◽  
Debamitra Chakrovarty ◽  
Shridhar P. Gejji ◽  
Prajakta Gosavi-Mirkute ◽  
...  

Bromine substituted aminonaphthoquinones – chemosensors for metal ions.


1993 ◽  
Vol 51 (1-2) ◽  
pp. 170
Author(s):  
Luis P. Reynaldo ◽  
Toru Maruyama ◽  
William DeW. Horrocks ◽  
Joseph.J. Villafranca

2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Gunseli Bayram Akcapinar ◽  
Osman Ugur Sezerman

Metal ions play pivotal roles in protein structure, function and stability. The functional and structural diversity of proteins in nature expanded with the incorporation of metal ions or clusters in proteins. Approximately one-third of these proteins in the databases contain metal ions. Many biological and chemical processes in nature involve metal ion-binding proteins, aka metalloproteins. Many cellular reactions that underpin life require metalloproteins. Most of the remarkable, complex chemical transformations are catalysed by metalloenzymes. Realization of the importance of metal-binding sites in a variety of cellular events led to the advancement of various computational methods for their prediction and characterization. Furthermore, as structural and functional knowledgebase about metalloproteins is expanding with advances in computational and experimental fields, the focus of the research is now shifting towards de novo design and redesign of metalloproteins to extend nature’s own diversity beyond its limits. In this review, we will focus on the computational toolbox for prediction of metal ion-binding sites, de novo metalloprotein design and redesign. We will also give examples of tailor-made artificial metalloproteins designed with the computational toolbox.


Metallomics ◽  
2011 ◽  
Vol 3 (12) ◽  
pp. 1331 ◽  
Author(s):  
Attila Jancsó ◽  
Dániel Szunyogh ◽  
Flemming H. Larsen ◽  
Peter W. Thulstrup ◽  
Niels Johan Christensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document