scholarly journals Annexin VI: an intracellular target for ATP.

1999 ◽  
Vol 46 (3) ◽  
pp. 801-812 ◽  
Author(s):  
J Bandorowicz-Pikuła ◽  
M Danieluk ◽  
A Wrzosek ◽  
R Buś ◽  
R Buchet ◽  
...  

Annexin VI (AnxVI), an Ca2+- and phospholipid-binding protein, interacts in vitro with ATP in a calcium-dependent manner. Experimental evidence indicates that its nucleotide-binding domain which is localized in the C-terminal half of the protein differs structurally from ATP/GTP-binding motifs found in other nucleotide-binding proteins. The amino-acid residues of AnxVI directly involved in ATP binding have not been yet defined. Binding of ATP to AnxVI induces changes in the secondary and tertiary structures of protein, affecting the affinity of AnxVI for Ca2+ and, in consequence, influencing the Ca2+-dependent activities of AnxVI: binding to F-actin and to membranous phospholipids, and self-association of the annexin molecules. These observations suggest that ATP is a functional ligand for AnxVI in vivo, and ATP-sensitive AnxVI may play the role of a factor coupling vesicular transport and calcium homeostasis to cellular metabolism.

Gut ◽  
2020 ◽  
pp. gutjnl-2020-321386
Author(s):  
Shushu Song ◽  
Yinghong Shi ◽  
Weicheng Wu ◽  
Hao Wu ◽  
Lei Chang ◽  
...  

ObjectiveDysfunction of endoplasmic reticulum (ER) proteins is closely related to homeostasis disturbance and malignant transformation of hepatocellular carcinoma (HCC). Reticulons (RTN) are a family of ER-resident proteins critical for maintaining ER function. Nevertheless, the precise roles of RTN in HCC remain largely unclear. The aim of the study is to examine the effect of reticulon family member RTN3 on HCC development and explore the underlying mechanisms.DesignClinical HCC samples were collected to assess the relationship between RTN3 expression and patients’ outcome. HCC cell lines were employed to examine the effects of RTN3 on cellular proliferation, apoptosis and signal transduction in vitro. Nude mice model was used to detect the role of RTN3 in modulating tumour growth in vivo.ResultsWe found that RTN3 was highly expressed in normal hepatocytes but frequently downregulated in HCC. Low RTN3 expression predicted poor outcome in patients with HCC in TP53 gene mutation and HBV infection status-dependent manner. RTN3 restrained HCC growth and induced apoptosis by activating p53. Mechanism studies indicated that RTN3 facilitated p53 Ser392 phosphorylation via Chk2 and enhanced subsequent p53 nuclear localisation. RTN3 interacted with Chk2, recruited it to ER and promoted its activation in an ER calcium-dependent manner. Nevertheless, the tumour suppressive effects of RTN3 were abrogated in HBV-positive cells. HBV surface antigen competed with Chk2 for RTN3 binding and blocked RTN3-mediated Chk2/p53 activation.ConclusionThe findings suggest that RTN3 functions as a novel suppressor of HCC by activating Chk2/p53 pathway and provide more clues to better understand the oncogenic effects of HBV.


2017 ◽  
Vol 9 (2) ◽  
pp. 217-228 ◽  
Author(s):  
Insu Hwang ◽  
Kenichiro Mori ◽  
Katsuki Ohtani ◽  
Yasuyuki Matsuda ◽  
Nitai Roy ◽  
...  

Collectins are C-type lectins that are involved in innate immunity as pattern recognition molecules. Recently, collectin kidney 1 (CL-K1) has been discovered, and in vitro studies have shown that CL-K1 binds to microbes and activates the lectin complement pathway. However, in vivo functions of CL-K1 against microbes have not been elucidated. To investigate the biological functions of CL-K1, we generated CL-K1 knockout (CL-K1-/-) mice and then performed a Streptococcus pneumoniae infection analysis. First, we found that recombinant human CL-K1 bound to S. pneumoniae in a calcium-dependent manner, and induced complement activation. CL-K1-/- mice sera formed less C3 deposition on S. pneumoniae. Furthermore, immunofluorescence analysis in the wild-type (WT) mice demonstrated that CL-K1 and C3 were localized on S. pneumoniae in infected lungs. CL-K1-/- mice revealed decreased phagocytosis of S. pneumoniae. Consequently, less S. pneumoniae clearance was observed in their lungs. CL-K1-/- mice showed severe pulmonary inflammation and weight loss in comparison with WT mice. Finally, the decreased clearance and severe pulmonary inflammation caused by S. pneumoniae infection might cause higher CL-K1-/- mice lethality. Our results suggest that CL-K1 might play an important role in host protection against S. pneumoniae infection through the activation of the lectin complement pathway.


2007 ◽  
Vol 75 (11) ◽  
pp. 5127-5134 ◽  
Author(s):  
Sheetal Gandotra ◽  
Sihyug Jang ◽  
Peter J. Murray ◽  
Padmini Salgame ◽  
Sabine Ehrt

ABSTRACT Nucleotide-binding oligomerization domain proteins (NODs) are modular cytoplasmic proteins implicated in the recognition of peptidoglycan-derived molecules. NOD2 has recently been shown to be important for host cell cytokine responses to Mycobacterium tuberculosis, to synergize with Toll-like receptor 2 (TLR2) in mediating these responses, and thus to serve as a nonredundant recognition receptor for M. tuberculosis. Here, we demonstrate that macrophages and dendritic cells from NOD2-deficient mice were impaired in the production of proinflammatory cytokines and nitric oxide following infection with live, virulent M. tuberculosis. Mycolylarabinogalactan peptidoglycan (PGN), the cell wall core of M. tuberculosis, stimulated macrophages to release tumor necrosis factor (TNF) and interleukin-12p40 in a partially NOD2-dependent manner, and M. tuberculosis PGN required NOD2 for the optimal induction of TNF. However, NOD2-deficient mice were no more susceptible to infection with virulent M. tuberculosis than wild-type mice: they controlled the replication of M. tuberculosis in lung, spleen, and liver as well as wild-type mice, and both genotypes displayed similar lung pathologies. In addition, mice doubly deficient for NOD2 and TLR2 were similarly able to control an M. tuberculosis infection. Thus, NOD2 appears to participate in the recognition of M. tuberculosis by antigen-presenting cells in vitro yet is dispensable for the control of the pathogen during in vivo infection.


2018 ◽  
Author(s):  
Jos R. Wendrich ◽  
Bao-Jun Yang ◽  
Pieter Mijnhout ◽  
Hong-Wei Xue ◽  
Bert De Rybel ◽  
...  

AbstractGeometry and growth and division direction of individual cells are major contributors to plant organ shape and these processes are dependent on dynamics of microtubules (MT). Different MT structures, like the cortical microtubules, preprophase band and mitotic spindle, are characterized by diverse architectural dynamics (Hashimoto, 2015). While several MT binding proteins have been identified that have various effects on MT stability and architecture, they do not discriminate between the different MT structures. It is therefore likely that specific MT binding proteins exist that differentiate between MT structures in order to allow for the differences in architectural dynamics. Although evidence for the effect of specific cues, such as light and auxin, on MT dynamics has been shown in recent years (Lindeboom et al., 2013; Chen et al., 2014), it remains unknown how such cues are integrated and lead to specific effects. Here we provide evidence for how auxin and calcium signaling can be integrated to modulate MT dynamics, by means of IQD proteins. We show that the Arabidopsis IQD15-18 subclade of this family is regulated by auxin signaling, can bind calmodulins in a calcium-dependent manner and are evolutionarily conserved. Furthermore, AtIQD15-18 directly bind SPIRAL2 protein in vitro and in vivo and modulate its function, likely in a calmodulin-dependent way, thereby providing a missing link between two important regulatory pathways of MT dynamics.One sentence summaryIQD proteins integrate auxin and calcium signaling, two major signaling pathways, to control the cytoskeleton dynamics and cell shape of Arabidopsis.


2011 ◽  
Vol 286 (41) ◽  
pp. 35380-35387 ◽  
Author(s):  
Yide Mei ◽  
Allison Alcivar Hahn ◽  
Shimin Hu ◽  
Xiaolu Yang

The inhibitors of apoptosis (IAPs) are critical regulators of apoptosis and other fundamental cellular processes. Many IAPs are RING domain-containing ubiquitin E3 ligases that control the stability of their interacting proteins. However, how IAP stability is regulated remains unclear. Here we report that USP19, a deubiquitinating enzyme, interacts with cellular IAP 1 (c-IAP1) and c-IAP2. Knockdown of USP19 decreases levels of both c-IAPs, whereas overexpression of USP19 results in a marked increase in c-IAP levels. USP19 effectively removes ubiquitin from c-IAPs in vitro, but it stabilizes c-IAPs in vivo mainly through deubiquitinase-independent mechanisms. The deubiquitinase activity is involved in the stabilization of USP19 itself, which is facilitated by USP19 self-association. Functionally, knockdown of USP19 enhances TNFα-induced caspase activation and apoptosis in a c-IAP1 and 2-dependent manner. These results suggest that the self-ubiquitin ligase activity of c-IAPs is inhibited by USP19 and implicate deubiquitinating enzymes in the regulation of IAP stability.


2005 ◽  
Vol 170 (3) ◽  
pp. 465-476 ◽  
Author(s):  
Tina M. Leisner ◽  
Mingjuan Liu ◽  
Zahara M. Jaffer ◽  
Jonathan Chernoff ◽  
Leslie V. Parise

p21-activated kinases (PAKs) regulate many cellular processes, including cytoskeletal rearrangement and cell migration. In this study, we report a direct and specific interaction of PAK1 with a 22-kD Ca2+-binding protein, CIB1, which results in PAK1 activation both in vitro and in vivo. CIB1 binds to PAK1 within discrete regions surrounding the inhibitory switch domain in a calcium-dependent manner, providing a potential mechanism of CIB1-induced PAK1 activation. CIB1 overexpression significantly decreases cell migration on fibronectin as a result of a PAK1-and LIM kinase–dependent increase in cofilin phosphorylation. Conversely, the RNA interference–mediated depletion of CIB1 increases cell migration and reduces normal adhesion-induced PAK1 activation and cofilin phosphorylation. Together, these results demonstrate that endogenous CIB1 is required for regulated adhesion-induced PAK1 activation and preferentially induces a PAK1-dependent pathway that can negatively regulate cell migration. These results point to CIB1 as a key regulator of PAK1 activation and signaling.


2004 ◽  
Vol 3 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Pinfen Yang ◽  
Chun Yang ◽  
Winfield S. Sale

ABSTRACT Genetic and morphological studies have revealed that the radial spokes regulate ciliary and flagellar bending. Functional and biochemical analysis and the discovery of calmodulin in the radial spokes suggest that the regulatory mechanism involves control of axonemal protein phosphorylation and calcium binding to spoke proteins. To identify potential regulatory proteins in the radial spoke, in-gel kinase assays were performed on isolated axonemes and radial spoke fractions. The results indicated that radial spoke protein 2 (RSP2) can bind ATP and transfer phosphate in vitro. RSP2 was cloned and mapped to the PF24 locus, a gene required for motility. Sequencing revealed that pf24 contains a point mutation converting the first ATG to ATA, resulting in only trace amounts of RSP2 and confirming the RSP2 mapping. Surprisingly, the sequence does not include signature domains for conventional kinases, indicating that RSP2 may not perform as a protein kinase in vivo. However, the predicted RSP2 protein sequence contains Ca2+-dependent calmodulin binding motifs and a GAF domain, a domain found in diverse signaling proteins for binding small ligands including cyclic nucleotides. As predicted from the sequence, recombinant RSP2 binds calmodulin in a calcium-dependent manner. We postulate that RSP2 is a regulatory subunit of the radial spoke involved in localization of calmodulin for control of motility.


1998 ◽  
Vol 45 (3) ◽  
pp. 735-744
Author(s):  
J Bandorowicz-Pikuła ◽  
S Pikuła

The paradigm of annexins as phospholipid-binding proteins interacting with membranes in a calcium-dependent manner has been recently questioned in light of observations that some annexin isoforms may behave like membrane integral proteins or remain associated with their target membranes at low, resting, concentrations of Ca2+ in the cytoplasm. In addition, an evidence has been presented that some annexins (annexins I, VI and VII) bind in vitro ATP and GTP, and upon binding the nucleotide the in vitro activity of these proteins is modified. However, annexins do not contain Walker A and B consensus sequences for ATP/GTP binding. This review presents the hypothesis that a new ATP-binding motif exists within the annexin molecules and that ATP may play a role of functional ligand for annexins also in vivo.


2003 ◽  
Vol 23 (8) ◽  
pp. 2907-2913 ◽  
Author(s):  
Bent Brachvogel ◽  
Jörg Dikschas ◽  
Helga Moch ◽  
Heike Welzel ◽  
Klaus von der Mark ◽  
...  

ABSTRACT Annexins are highly conserved proteins that are characterized by their ability to interact with phospholipids in a calcium-dependent manner. Although diverse functions have been ascribed to annexins based on in vitro analyses, their in vivo functions still remain unclear. The intensively studied annexin A5 has been identified by its effects on blood coagulation, and subsequently, its function as a calcium-specific ion channel was described. In vitro experiments and expression studies suggested a potential role of annexin A5 during calcification processes in vivo, especially in endochondral ossification. To gain insights into the relevance of annexin A5 in this process, we generated an annexin A5-deficient mouse mutant. Mice lacking annexin A5 are viable, are fertile, and reveal no significant alterations in the biochemical parameters characteristic for metabolic or functional defects. Neither the development of skeletal elements nor the in vitro calcification properties of isolated chondrocytes is significantly impaired by the absence of annexin A5. Therefore, annexin A5 is dispensable for the formation and maintenance of skeletal elements in the mouse and may possibly be pointing to a compensatory effect of other members from the annexin family due to their high functional and structural similarity.


2010 ◽  
Vol 5 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Wenbo Zhou ◽  
Chunmei Long ◽  
Anthony Fink ◽  
Vladimir Uversky

Abstractα-Synuclein, a natively unfolded protein aggregation which is implicated in the pathogenesis of Parkinson’s disease and several other neurodegenerative diseases, is known to interact with a great number of unrelated proteins. Some of these proteins, such as β-synuclein and DJ-1, were shown to inhibit α-synuclein aggregation in vitro and in vivo therefore acting as chaperones. Since calbindin-D28K is co-localized with Ca2+ neuronal membrane pumps, and since α-synuclein is also found in the membrane proximity, these two proteins can potentially interact in vivo. Here we show that calbindin-D28K interacts with α-synuclein and inhibits its fibrillation in a calcium-dependent manner, therefore potentially acting as a calcium-dependent chaperone.


Sign in / Sign up

Export Citation Format

Share Document