scholarly journals The USP19 Deubiquitinase Regulates the Stability of c-IAP1 and c-IAP2

2011 ◽  
Vol 286 (41) ◽  
pp. 35380-35387 ◽  
Author(s):  
Yide Mei ◽  
Allison Alcivar Hahn ◽  
Shimin Hu ◽  
Xiaolu Yang

The inhibitors of apoptosis (IAPs) are critical regulators of apoptosis and other fundamental cellular processes. Many IAPs are RING domain-containing ubiquitin E3 ligases that control the stability of their interacting proteins. However, how IAP stability is regulated remains unclear. Here we report that USP19, a deubiquitinating enzyme, interacts with cellular IAP 1 (c-IAP1) and c-IAP2. Knockdown of USP19 decreases levels of both c-IAPs, whereas overexpression of USP19 results in a marked increase in c-IAP levels. USP19 effectively removes ubiquitin from c-IAPs in vitro, but it stabilizes c-IAPs in vivo mainly through deubiquitinase-independent mechanisms. The deubiquitinase activity is involved in the stabilization of USP19 itself, which is facilitated by USP19 self-association. Functionally, knockdown of USP19 enhances TNFα-induced caspase activation and apoptosis in a c-IAP1 and 2-dependent manner. These results suggest that the self-ubiquitin ligase activity of c-IAPs is inhibited by USP19 and implicate deubiquitinating enzymes in the regulation of IAP stability.

2020 ◽  
Vol 21 (16) ◽  
pp. 5638
Author(s):  
Jinhong Cho ◽  
Jinyoung Park ◽  
Eunice EunKyeong Kim ◽  
Eun Joo Song

Deubiquitinating enzymes regulate various cellular processes, particularly protein degradation, localization, and protein–protein interactions. The dysregulation of deubiquitinating enzyme (DUB) activity has been linked to several diseases; however, the function of many DUBs has not been identified. Therefore, the development of methods to assess DUB activity is important to identify novel DUBs, characterize DUB selectivity, and profile dynamic DUB substrates. Here, we review various methods of evaluating DUB activity using cell lysates or purified DUBs, as well as the types of probes used in these methods. In addition, we introduce some techniques that can deliver DUB probes into the cells and cell-permeable activity-based probes to directly visualize and quantify DUB activity in live cells. This review could contribute to the development of DUB inhibitors by providing important information on the characteristics and applications of various probes used to evaluate and detect DUB activity in vitro and in vivo.


2013 ◽  
Vol 200 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Michael Lazarou ◽  
Derek P. Narendra ◽  
Seok Min Jin ◽  
Ephrem Tekle ◽  
Soojay Banerjee ◽  
...  

Genetic studies indicate that the mitochondrial kinase PINK1 and the RING-between-RING E3 ubiquitin ligase Parkin function in the same pathway. In concurrence, mechanistic studies show that PINK1 can recruit Parkin from the cytosol to the mitochondria, increase the ubiquitination activity of Parkin, and induce Parkin-mediated mitophagy. Here, we used a cell-free assay to recapitulate PINK1-dependent activation of Parkin ubiquitination of a validated mitochondrial substrate, mitofusin 1. We show that PINK1 activated the formation of a Parkin–ubiquitin thioester intermediate, a hallmark of HECT E3 ligases, both in vitro and in vivo. Parkin HECT-like ubiquitin ligase activity was essential for PINK1-mediated Parkin translocation to mitochondria and mitophagy. Using an inactive Parkin mutant, we found that PINK1 stimulated Parkin self-association and complex formation upstream of mitochondrial translocation. Self-association occurred independent of ubiquitination activity through the RING-between-RING domain, providing mechanistic insight into how PINK1 activates Parkin.


2015 ◽  
Vol 112 (40) ◽  
pp. E5543-E5551 ◽  
Author(s):  
Kamila Kalinowska ◽  
Marie-Kristin Nagel ◽  
Kaija Goodman ◽  
Laura Cuyas ◽  
Franziska Anzenberger ◽  
...  

Ubiquitination is a signal for various cellular processes, including for endocytic degradation of plasma membrane cargos. Ubiquitinating as well as deubiquitinating enzymes (DUBs) can regulate these processes by modifying the ubiquitination status of target protein. Although accumulating evidence points to the important regulatory role of DUBs, the molecular basis of their regulation is still not well understood. Associated molecule with the SH3 domain of signal transduction adaptor molecule (STAM) (AMSH) is a conserved metalloprotease DUB in eukaryotes. AMSH proteins interact with components of the endosomal sorting complex required for transport (ESCRT) and are implicated in intracellular trafficking. To investigate how the function of AMSH is regulated at the cellular level, we carried out an interaction screen for the Arabidopsis AMSH proteins and identified the Arabidopsis homolog of apoptosis-linked gene-2 interacting protein X (ALIX) as a protein interacting with AMSH3 in vitro and in vivo. Analysis of alix knockout mutants in Arabidopsis showed that ALIX is essential for plant growth and development and that ALIX is important for the biogenesis of the vacuole and multivesicular bodies (MVBs). Cell biological analysis revealed that ALIX and AMSH3 colocalize on late endosomes. Although ALIX did not stimulate AMSH3 activity in vitro, in the absence of ALIX, AMSH3 localization on endosomes was abolished. Taken together, our data indicate that ALIX could function as an important regulator for AMSH3 function at the late endosomes.


1999 ◽  
Vol 46 (3) ◽  
pp. 801-812 ◽  
Author(s):  
J Bandorowicz-Pikuła ◽  
M Danieluk ◽  
A Wrzosek ◽  
R Buś ◽  
R Buchet ◽  
...  

Annexin VI (AnxVI), an Ca2+- and phospholipid-binding protein, interacts in vitro with ATP in a calcium-dependent manner. Experimental evidence indicates that its nucleotide-binding domain which is localized in the C-terminal half of the protein differs structurally from ATP/GTP-binding motifs found in other nucleotide-binding proteins. The amino-acid residues of AnxVI directly involved in ATP binding have not been yet defined. Binding of ATP to AnxVI induces changes in the secondary and tertiary structures of protein, affecting the affinity of AnxVI for Ca2+ and, in consequence, influencing the Ca2+-dependent activities of AnxVI: binding to F-actin and to membranous phospholipids, and self-association of the annexin molecules. These observations suggest that ATP is a functional ligand for AnxVI in vivo, and ATP-sensitive AnxVI may play the role of a factor coupling vesicular transport and calcium homeostasis to cellular metabolism.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 813
Author(s):  
Tigran V. Chalikian ◽  
Robert B. Macgregor

Four-stranded non-canonical DNA structures including G-quadruplexes and i-motifs have been found in the genome and are thought to be involved in regulation of biological function. These structures have been implicated in telomere biology, genomic instability, and regulation of transcription and translation events. To gain an understanding of the molecular determinants underlying the biological role of four-stranded DNA structures, their biophysical properties have been extensively studied. The limited libraries on volume, expansibility, and compressibility accumulated to date have begun to provide insights into the molecular origins of helix-to-coil and helix-to-helix conformational transitions involving four-stranded DNA structures. In this article, we review the recent progress in volumetric investigations of G-quadruplexes and i-motifs, emphasizing how such data can be used to characterize intra-and intermolecular interactions, including solvation. We describe how volumetric data can be interpreted at the molecular level to yield a better understanding of the role that solute–solvent interactions play in modulating the stability and recognition events of nucleic acids. Taken together, volumetric studies facilitate unveiling the molecular determinants of biological events involving biopolymers, including G-quadruplexes and i-motifs, by providing one more piece to the thermodynamic puzzle describing the energetics of cellular processes in vitro and, by extension, in vivo.


2007 ◽  
Vol 408 (2) ◽  
pp. 231-240 ◽  
Author(s):  
Diego Villar ◽  
Alicia Vara-Vega ◽  
Manuel O. Landázuri ◽  
Luis Del Peso

HIFs [hypoxia-inducible (transcription) factors] are essential for the induction of an adaptive gene expression programme under low oxygen partial pressure. The activity of these transcription factors is mainly determined by the stability of the HIFα subunit, which is regulated, in an oxygen-dependent manner, by a family of three prolyl 4-hydroxylases [EGLN1–EGLN3 (EGL nine homologues 1–3)]. HIFα contains two, N- and C-terminal, independent ODDs (oxygen-dependent degradation domains), namely NODD and CODD, that, upon hydroxylation by the EGLNs, target HIFα for proteasomal degradation. In vitro studies indicate that each EGLN shows a differential preference for ODDs, However, the sequence determinants for such specificity are unknown. In the present study we showed that whereas EGLN1 and EGLN2 acted upon any of these ODDs to regulate HIF1α protein levels and activity in vivo, EGLN3 only acted on the CODD. With the aim of identifying the region within EGLNs responsible for their differential substrate preference, we investigated the activity and binding pattern of different EGLN deletions and chimaeric constructs generated by domain swapping between EGLN1 and EGLN3. These studies revealed a region of 97 residues that was sufficient to confer the characteristic substrate binding observed for each EGLN. Within this region, we identified the minimal sequence (EGLN1 residues 236–252) involved in substrate discrimination. Importantly, mapping of these sequences on the EGLN1 tertiary structure indicates that substrate specificity is determined by a region relatively remote from the catalytic site.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3475
Author(s):  
Xiaoming Liu ◽  
Xingyu Chen ◽  
Mengqing Xiao ◽  
Yuxing Zhu ◽  
Renjie Gong ◽  
...  

O-GlcNAcylation is an important post-translational modification (PTM) jointly controlled by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Aberrant hyper-O-GlcNAcylation is reported to yield hepatocellular carcinoma (HCC) malignancy, but the underlying mechanisms of the OGT/OGA imbalance responsible for HCC tumorigenesis remain largely unknown. Here, we report that RAN-binding protein 2 (RANBP2), one of the small ubiquitin-like modifier (SUMO) E3 ligases, contributed to malignant phenotypes in HCC. RANBP2 was found to facilitate CCAAT/enhancer-binding protein alpha (CEBPα) SUMOylation and degradation by direct interplay with CEBPα. As a transcriptional factor, CEBPα was verified to augment OGA transcription, and further experiments demonstrated that RANBP2 enhanced the O-GlcNAc level by downregulating OGA transcription while not affecting OGT expression. Importantly, we provided in vitro and in vivo evidence of HCC malignant phenotypes that RANBP2 triggered through an imbalance of OGT/OGA and subsequent higher O-GlcNAcylation events for oncogenic proteins such as peroxisome proliferative-activated receptor gamma coactivator 1 alpha (PGC1α) in a CEBPα-dependent manner. Altogether, our results show a novel molecular mechanism whereby RANBP2 regulates its function through CEBPα-dependent OGA downregulation to induce a global change in the hyper-O-GlcNAcylation of genes, such as PGC1α, encouraging the further study of promising implications for HCC therapy.


2021 ◽  
Author(s):  
Jie Shen ◽  
Shengjie Feng ◽  
Jiao Deng ◽  
Qingwen Huang ◽  
Dayong Zhao ◽  
...  

Increasing evidence has shown that DAB2IP acts as a tumor suppressor and plays an inhibition role in many tumors. However, the underlying mechanism is still uncertain. Our study shows that DAB2IP is positively associated with a better prognosis in colon cancer patients with wild-type TP53 expression. In vitro assay shows that DAB2IP elicits potent tumor-suppressive effects on inhibiting cell invasiveness, colony formation and promoting cell apoptosis in wild-type TP53 colon cancer cell lines. Subsequently, DAB2IP is demonstrated to up-regulate the stability of wild-type TP53 by inhibiting its degradation in a ubiquitin-proteasome-dependent manner. Using mass spectrometry profiling, we unveil that DAB2IP and p53 could both interact with the ubiquitin ligase-related protein, GRP75. Mechanistically, DAB2IP could competitively bind with GRP75, thus reducing GRP75-mediated p53 ubiquitination and degradation. Finally, animal experiments also reveal that DAB2IP inhibits the tumor progression in vivo. In conclusion, our study presents a novel function of DAB2IP in GRP75-driven wild-type p53 degradation, which provides a new insight in DAB2IP-induced tumor suppression and provides a novel molecular aspect of the p53 pathway.


2019 ◽  
Author(s):  
Molly Hodul ◽  
Rakesh Ganji ◽  
Caroline L Dahlberg ◽  
Malavika Raman ◽  
Peter Juo

ABSTRACTUbiquitination is a reversible post-translational modification that has emerged as a critical regulator of synapse development and function. However, mechanisms that regulate the deubiquitinating enzymes (DUBs) that are responsible for the removal of ubiquitin from target proteins are poorly understood. We previously showed that the DUB USP-46 removes ubiquitin from the glutamate receptor GLR-1 and regulates it trafficking and degradation in C. elegans. We found that WD40-repeat proteins WDR-20 and WDR-48 bind and stimulate the catalytic activity of USP-46. Here, we identify another mechanism by which WDR-48 regulates USP-46. We found that increased expression of WDR-48, but not WDR-20, promotes USP-46 abundance in mammalian cells in culture and in C. elegans neurons in vivo. Inhibition of the proteasome promotes the abundance of USP-46, and this effect is non-additive with increased expression of WDR-48. We found that USP-46 is ubiquitinated, and expression of WDR-48 reduces the levels of ubiquitin-USP-46 conjugates and increases the half-life of USP-46. A point mutant version of WDR-48 that disrupts binding to USP-46 is unable to promote USP-46 abundance in vivo. Together, these data support a model in which WDR-48 binds and stabilizes USP-46 protein levels by preventing the ubiquitination and degradation of USP-46 in the proteasome. Given that a large number of USPs interact with WDR proteins, we propose that stabilization of DUBs by their interacting WDR proteins may be a conserved and widely used mechanism to control DUB availability and function.


2019 ◽  
Vol 5 (5) ◽  
pp. eaav9040 ◽  
Author(s):  
Wei Yuan ◽  
Jincong Zhou ◽  
Jinjin Tong ◽  
Wanqing Zhuo ◽  
Lishuan Wang ◽  
...  

The R-loop, composed of a DNA-RNA hybrid and the displaced single-stranded DNA, regulates diverse cellular processes. However, how cellular R-loops are recognized remains poorly understood. Here, we report the discovery of the evolutionally conserved ALBA proteins (AtALBA1 and AtALBA2) functioning as the genic R-loop readers in Arabidopsis. While AtALBA1 binds to the DNA-RNA hybrid, AtALBA2 associates with single-stranded DNA in the R-loops in vitro. In vivo, these two proteins interact and colocalize in the nucleus, where they preferentially bind to genic regions with active epigenetic marks in an R-loop–dependent manner. Depletion of AtALBA1 or AtALBA2 results in hypersensitivity of plants to DNA damaging agents. The formation of DNA breaks in alba mutants originates from unprotected R-loops. Our results reveal that the AtALBA1 and AtALBA2 protein complex is the genic R-loop reader crucial for genome stability in Arabidopsis.


Sign in / Sign up

Export Citation Format

Share Document