scholarly journals Kinetic modeling of simultaneous saccharification and fermentation of corn starch for ethanol production.

2014 ◽  
Vol 61 (1) ◽  
Author(s):  
Wojciech Białas ◽  
Adrian Czerniak ◽  
Daria Szymanowska-Powałowska

Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.

2011 ◽  
Vol 343-344 ◽  
pp. 963-967 ◽  
Author(s):  
Zhang Qiang ◽  
Anne Belinda Thomsen

In order to find out appropriate process for ethanol production from corn stover, wet oxidation(195°C,15 minutes)and simultaneous saccharification and fermentation (SSF) was carried out to produce ethanol. The results showed that the cellulose recovery of 92.9% and the hemicellulose recovery of 74.6% were obtained after pretreatment. 86.5% of cellulose was remained in the solid cake . After 24h hydrolysis at 50°C using cellulase(Cellubrix L),the achieved conversion of cellulose to glucose was 64.8%. Ethanol production was evaluated from dried solid cake and the hydrolysate was employed as liquid fraction . After 142 h of SSF with substrate concentration of 8% (W/V), ethanol yield of 73.1 % of the theoretical based on glucose in the raw material was obtained by S. cerevisiae(ordinary baker’ yeast) . The corresponding ethanol concentration and volumetric productivity were 17.2g/L and 0.121g/L.h respectively. The estimated total ethanol production was 257.7 kg/ton raw material by assuming consumption of both C-6 and C-5. No obvious inhibition effect occurred during SSF. These instructions give you the basic guidelines for preparing papers for WCICA/IEEE conference proceedings.


2014 ◽  
Vol 917 ◽  
pp. 80-86
Author(s):  
Mohd Saman Siti Aisyah ◽  
Pacharakamol Petchpradab ◽  
Yoshimitsu Uemura ◽  
Suzana Yusup ◽  
Machi Kanna ◽  
...  

Separate hydrolysis and fermentation (SHF) is the common process in producing ethanol from lignocellulosic biomass. Nowadays, simultaneous saccharification and fermentation (SSF) process has been seen as potential process for producing ethanol with shortens process time with higher yield of ethanol. Hence, in the current work, the utilization of empty fruit bunches (EFB) in SSF process was studied. In order to improve saccharification reactivity of EFB, hydrothermal pretreatment at 180 and 220 °C was used to pretreat EFB. The findings showed that SSF has the potential in producing ethanol from EFB.


RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 91409-91419 ◽  
Author(s):  
Rajendran Velmurugan ◽  
Aran Incharoensakdi

To improve the saccharification and fermentation processes, proper ultrasound was applied which resulted in the presence of cellulase complex with improved β-glucosidase ratio leading to enhanced overall ethanol yield.


2014 ◽  
Vol 68 (3) ◽  
Author(s):  
František Gago ◽  
Viera Horváthová ◽  
Vladimír Ondáš ◽  
Ernest Šturdík

AbstractThe amylose/amylopectin ratio in cereal substrates is one of the parameters affecting starch hydrolysis and fermentation process. Waxy (less than 1 mass % of amylose) starch seems to be suitable for improving the fuel ethanol production. The main aim of this paper was to characterize the fermentation performance of corn and wheat waxy and non-waxy cultivars in terms of simultaneous saccharification and fermentation (SSF) as well as of the separated hydrolysis and fermentation (SHF) type. Two corn (waxy and non-waxy) and two wheat (waxy and non-waxy) cultivars were used for the comparison applying separate enzymatic hydrolysis and fermentation. In the SHF process, the glucose content was higher after saccharification in the waxy corn and wheat compared to that in non-waxy corn and wheat. In the SSF of waxy varieties, the glucose content after the pre-saccharification was also higher than in the non-waxy ones. Although the starch content did not vary significantly, differences in the glucose content after saccharification were observed. The ethanol yield obtained after the distillation of mash varied from 229.2–262.3 L per ton for the SHF fermentation, while it was in the range of 311.5–347.9 L per ton for the SSF process.


2009 ◽  
Vol 161 (1-8) ◽  
pp. 93-105 ◽  
Author(s):  
Danielle da Silveira dos Santos ◽  
Anna Carolina Camelo ◽  
Kelly Cristina Pedro Rodrigues ◽  
Luís Cláudio Carlos ◽  
Nei Pereira

2006 ◽  
Vol 49 (3) ◽  
pp. 481-490 ◽  
Author(s):  
Marcos Antonio das Neves ◽  
Toshinori Kimura ◽  
Naoto Shimizu ◽  
Kiwamu Shiiba

Two samples of low-grade wheat flour, namely low-grade 1 (LG1) and low-grade 2 (LG2), with different carbohydrate and fibrous content, were used as substrates. The samples were liquefied using various concentrations of alpha- or beta-amylase, in order to optimize the production of fermentable sugars; the enzyme alpha-amylase revealed higher performance. After liquefaction, the simultaneous saccharification and fermentation was conducted in a jar fermentor. Amyloglucosidase was used for saccharification, and dry baker's yeast, S. cerevisiae, for fermentation simultaneously. Glucose was consumed promptly in both cases, LG1 and LG2; ethanol production was considerably higher in LG1 (38.6 g/L), compared to LG2 (24.9 g/L). The maximum ATP production was observed early in the SSF process. LG1 revealed higher potential as substrate for ethanol production.


2018 ◽  
Vol 3 (4) ◽  
pp. 160-166
Author(s):  
Shahabaldin Rezania ◽  
Shaza Eva Mohamad ◽  
Adibah Yahya ◽  
Madihah Md Salleh

The rate of ethanol production can be affected by different parameters that involved during fermentation. In this study, acid treated cocoa waste (CW) was used as a lignocellulosic substrate for ethanol production in the simultaneous saccharification and fermentation (SSF) using microorganism isolated from locally fermented food tapai ubi and tapai pulut. For optimization, the experiments were carried out using response surface methodology (RSM). The effect of four independent variables temperature, CW concentration, inoculum size and pH during fermentation was investigated. A central composite design (CCD) was used to evaluate the effect and interactions of the parameters. ANOVA analysis revealed that pH and inoculum size had the most significant effects on the ethanol production. The optimized condition for the ethanol production was at temperature 31.7°C, pH 6.0, inoculum size 10.5% and CW concentration 0.3g/L while after optimization, ethanol podcution increased from 6.2±0.8g/L to 9.5±1.1g/L.


2013 ◽  
Vol 3 (4) ◽  
pp. 152-157
Author(s):  
T. C. Agbodike ◽  
S. A. Ado ◽  
I. O. Abdullahi

Elephant grass (Pennisetum purpureum) was evaluated for its ethanol production potential using co-cultures of Aspergillus niger and Saccharomyces cerevisiae. Proximate and lignocellulose analysis carried out on the plant sample showed that it had crude fibre, lignin, hemicellulose and cellulose contents of 31.5%, 26.78%, 18.76% and 34.16% respectively. A. niger strain (AN-15) used for the simultaneous saccharification and fermentation (SSF) of the plant sample was isolated from soil and selected upon subsequent screening because it gave highest yield of cellulase enzyme (0.1792 IU/ml/min). S. cerevisiae strain (PW-4) used for the SSF was isolated from palm wine and selected upon subsequent screening after showing ability to assimilate more sugars compared to other isolates. Fermentation of plant sample was carried out at different substrate concentrations ranging from 2-10% and highest ethanol yield (1.68g/100ml) was observed at 6% substrate concentration though lesser than that observed for glucose at same concentration (8.38g/100ml). Optimization of culture parameters for ethanol production showed maximum ethanol yield at pH 5, 35oC and agitation rate of 300 rpm.


Sign in / Sign up

Export Citation Format

Share Document