scholarly journals Biological Functions of Natural Antisense Transcripts

2017 ◽  
Vol 63 (4) ◽  
Author(s):  
Wojciech Rosikiewicz ◽  
Izabela Makałowska

Natural antisense transcripts (NATs) are RNA molecules that originate from opposite DNA strands of the same genomic locus (cis-NAT) or unlinked genomic loci (trans-NAT). NATs may play various regulatory functions at the transcriptional level via transcriptional interference. NATs may also regulate gene expression levels post-transcriptionally via induction of epigenetic changes or double-stranded RNA formation, which may lead to endogenous RNA interference, RNA editing or RNA masking. The true biological significance of the natural antisense transcripts remains controversial despite many years of research. Here, we summarize the current state of knowledge and discuss the sense-antisense overlap regulatory mechanisms and their potential.

2017 ◽  
Vol 44 (3) ◽  
pp. 843-856 ◽  
Author(s):  
Chun Yang ◽  
Seyed Nasrollah Tabatabaei ◽  
Xiangyan Ruan ◽  
Pierre Hardy

MicroRNAs (miRNAs) are a family of highly conserved noncoding single˗stranded RNA molecules of 21 to 25 nucleotides. miRNAs silence their cognate target genes at the post-transcriptional level and have been shown to have important roles in oncogenesis, invasion, and metastasis via epigenetic post-transcriptional gene regulation. Recent evidence indicates that the expression of miR-181a is altered in breast tumor tissue and in the serum of patients with breast cancer. However, there are several contradicting findings that challenge the biological significance of miR-181a in tumor development and metastasis. In fact, some studies have implicated miR-181a in regulating breast cancer gene expression. Here we summarize the current literature demonstrating established links between miR-181a and human breast cancer with a focus on recently identified mechanisms of action. This review also aims to explore the potential of miR-181a as a diagnostic and/or prognostic biomarker for breast cancer and to discuss the contradicting data regarding its targeting therapeutics and the associated challenges.


Author(s):  
Mahafarin Maralani ◽  
Behzad Baradaran ◽  
Khalil Hajiasgharzadeh ◽  
Marc Peeters

MicroRNAs (miRNAs) are a large family of evolutionary conserved small non-coding RNA molecules that firstly discovered in 1993. They regulate gene expression of about 50% of protein-coding genes at the post-transcriptional level. MiRNAs can target numerous messenger RNAs and subsequent misexpression of them can affect many different signaling pathways. They are playing a pivotal role in cancer development by regulation of the genes expression which involved in the proliferation, survival, differentiation, apoptosis or metastasis of the cancer cells. Several treatment approaches such as inhibition of oncomiRs and restoration of tumor suppressor miRNAs have been established in certain types of cancers and some other miRNA-based strategies are in development for cancer prevention and treatment. Nowadays, cancer is the most important target of miRNA therapeutics and the specific mechanisms by which miRNA mediates cancer pathways needs more research and study


1986 ◽  
Vol 64 (12) ◽  
pp. 2922-2927
Author(s):  
A. Jana ◽  
S. P. Sen

Leaf nuclei of vegetative and reproductive plants of Xanthium strumarium L. were incubated with the postribosomal supernatant of either phase and changes at the transcriptional level were studied in homologous and heterologous combinations. In the presence of the supernatant of reproductive plants, RNA synthesis by vegetative nuclei was decreased by 25%. Reproductive nuclei were less active in RNA synthesis. Gel electrophoretic studies revealed four RNA bands in vegetative nuclei incubated with reproductive supernatant, including a fast-moving low molecular weight band that could not be detected when the "vegetative" supernatant was used. The adenine/uracil ratios of the newly synthesized RNA of vegetative nuclei treated with vegetative and reproductive supernatants were 1.46 and 1.54, respectively, compared with 1.15 and 1.04 in the reproductive nuclei. Competitive DNA–RNA hybridization experiments indicated that about 2% of the [3H]RNA synthesized by nuclei of vegetative plants in the presence of the supernatant of reproductive plants could not be beaten out by the RNA of vegetative plants. Small quantitative differences, thus, may be expected in the RNA molecules synthesized by nuclei in the presence of the supernatant fraction of vegetative and reproductive plants. The supernatant fraction of the reproductive tissues decreased the incorporation of [3H]alanine and [3H]leucine in both the buffer-soluble and acid-soluble proteins and the nuclei of vegetative plants were more active in protein synthesis. Protein patterns as studied by acrylamide gel electrophoresis revealed alterations when vegetative leaf nuclei were incubated with the supernatant of reproductive tissues.


2013 ◽  
Vol 10 (3) ◽  
pp. e119-e125 ◽  
Author(s):  
Paul Halley ◽  
Olga Khorkova ◽  
Claes Wahlestedt

2018 ◽  
Vol 38 (1) ◽  
Author(s):  
Jin-yan Wang ◽  
Qian Zhang ◽  
Dan-dan Wang ◽  
Wei Yan ◽  
Huan-huan Sha ◽  
...  

MiRNAs, small non-coding RNA molecules, were recognized to be associated with the incidence and development of diverse neoplasms. MiRNAs were small non-coding RNAs that could regulate post-transcriptional level by binding to 3′-UTR of target mRNAs. Amongst which, miR-29a was demonstrated that it had significant impact on oncogenicity in various neoplasms through binding to critical genes which enhanced or inhibited the progression of cancers. MiR-29a participated in kinds of physiological and pathological processes, including virus replication, cell proliferation, differentiation, apoptosis, fibrosis, angiogenesis, tumorigenicity, metastasis, drug-resistance, and so on. According to its sufficient sensitivity and specificity, many studies showed that miR-29a might serve as a potential therapeutic target and promising biomarker in various tumors. In this review, we discussed the functions of miR-29a and its potential application in the diagnosis, treatment and stages of carcinoma, which could provide additional insight to develop a novel therapeutic strategy.


2021 ◽  
Author(s):  
Yong-Chao Xu ◽  
Jie Zhang ◽  
Dong-Yan Zhang ◽  
Ying-Hui Nan ◽  
Song Ge ◽  
...  

Abstract Background Wild rice, including Oryza nivara and Oryza rufipogon, which are considered as the ancestors of Asian cultivated rice (Oryza sativa L.), possess high genetic diversity and serve as a crucial resource for breeding novel cultivars of cultivated rice. Although many rice domestication related traits, such as seed shattering and plant architecture, have been intensively studied at the phenotypic and genomic levels, further investigation is needed to understand the molecular basis of phenotypic differences between cultivated and wild rice. Drought stress is one of the most severe abiotic stresses affecting rice growth and production. Adaptation to drought stress involves a cascade of genes and regulatory factors that form complex networks. Long noncoding natural antisense transcripts (lncNATs), a class of long noncoding RNAs (lncRNAs), regulate the corresponding sense transcripts and play an important role in plant growth and development. However, the contribution of lncNATs to drought stress response in wild rice remains largely unknown. Results Here, we conducted strand-specific RNA sequencing (ssRNA-seq) analysis of Nipponbare (O. sativa ssp. japonica) and two O. nivara accessions (BJ89 and BJ278) to determine the role of lncNATs in drought stress response in wild rice. A total of 1,246 lncRNAs were identified, including 1,091 coding–noncoding NAT pairs, of which 50 were expressed only in Nipponbare, and 77 were expressed only in BJ89 and/or BJ278. Of the 1,091 coding–noncoding NAT pairs, 240 were differentially expressed between control and drought stress conditions. Among these 240 NAT pairs, 12 were detected only in Nipponbare, and 187 were detected uniquely in O. nivara. Furthermore, 10 of the 240 coding–noncoding NAT pairs were correlated with genes previously demonstrated to be involved in stress response; among these, nine pairs were uniquely found in O. nivara, and one pair was shared between O. nivara and Nipponbare. Conclusion We identified lncNATs associated with drought stress response in cultivated rice and O. nivara. These results will improve our understanding of the function of lncNATs in drought tolerance and accelerate rice breeding.


2007 ◽  
Vol 35 (Database) ◽  
pp. D156-D161 ◽  
Author(s):  
Y. Zhang ◽  
J. Li ◽  
L. Kong ◽  
G. Gao ◽  
Q.-R. Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document