The effect analysis of an engine jet on an aircraft blast deflector

2018 ◽  
Vol 41 (4) ◽  
pp. 990-1001
Author(s):  
Song Ma ◽  
Jianguo Tan ◽  
Xiankai Li ◽  
Jiang Hao

This paper establishes a novel mathematical model for computing the plume flow field of a carrier-based aircraft engine. Its objective is to study the impact of jet exhaust gases with high temperature, high speed and high pressure on the jet blast deflector. The working condition of the nozzle of a fully powered on engine is first determined. The flow field of the exhaust jet is then numerically simulated at different deflection angle using the three-dimensional Reynolds averaged Navier–Stokes equations and the standard [Formula: see text]-[Formula: see text] turbulence method. Moreover, infra-red temperature tests are further carried out to test the temperature field when the jet blast deflector is at the [Formula: see text] deflection angle. The comparison between the simulation results and the experimental results show that the proposed computation model can perfectly describe the system. There is only 8–10% variation between them. A good verification is achieved. Moreover, the experimental results show that the jet blast deflector plays an outstanding role in driving the high-temperature exhaust gases. It is found that [Formula: see text] may be the best deflection angle to protect the deck and the surrounding equipment effectively. These data results provide a valuable basis for the design and layout optimization of the jet blast deflector and deck.

Author(s):  
A. J. Sanders

This paper describes the identification and prediction of a new class of non-synchronous vibration (NSV) problem encountered during the development of an advanced composite fan stator for an aircraft engine application. Variable exhaust nozzle testing on an instrumented engine is used to map out the NSV boundary, with both choke- and stall-side instability zones present that converge toward the nominal fan operating line and place a limit on the high-speed operating range. Time-accurate three-dimensional viscous CFD analyses are used to demonstrate the NSV instability is being driven by dynamic stalling of the fan stator due to unsteady shock-boundary layer interaction. The effects of downstream struts in the front frame of the engine are found to exasperate the problem, with the two fat service struts in the bypass duct generating significant spatial variations in the stator flow field. Strain gage measurements indicate that the stator vanes experiencing the highest vibratory strains correspond to the low static pressure regions of the fan stator assembly located approximately 90 degrees away from the two fat struts. The CFD analyses confirm the low static pressure sectors of the stator assembly are the passages in which the flow-induced NSV instability is initiated due to localized choking phenomena. The CFD predictions of the instability frequency are in reasonable agreement with the strain gage data, with the strain gage data indicating that the NSV response occurs at a frequency approximately 25% below the frequency of the fundamental bending mode. The flow patterns predicted by the CFD analyses are also correlated with the results of an engine flow visualization test to demonstrate the complex nature of the fan stator flow field.


2011 ◽  
Vol 99-100 ◽  
pp. 1287-1292
Author(s):  
Wei An Meng ◽  
Mutellip Ahmat ◽  
Nijat Yusup ◽  
Asiye Shavkat

Based on the computational fluid dynamics (CFD) theory and numerical simulation methods, the seal cavity flow field for the bellows mechanical seal under such the high temperature, high pressure, high-speed as complex working conditions was numerically simulated, and the temperature field, velocity field, pressure field, turbulent kinetic energy and the flow field vorticity distribution of the medium of the seal cavity were obtained, the three-dimensional fluid flow in the seal cavity, the heat transfer characteristics and the impact on the sealing performance were analyzed in this researching.


2005 ◽  
Vol 127 (2) ◽  
pp. 412-421 ◽  
Author(s):  
A. J. Sanders

This paper describes the identification and prediction of a new class of nonsynchronous vibration (NSV) problem encountered during the development of an advanced design composite fan stator for an aircraft engine application. Variable exhaust nozzle testing on an instrumented engine is used to map out the NSV boundary, with both choke- and stall-side instability zones present that converge toward the nominal fan operating line and place a limit on the high-speed operating range. Time-accurate three-dimensional viscous CFD analyses are used to demonstrate that the NSV instability is being driven by dynamic stalling of the fan stator due to unsteady shock-boundary layer interaction. The effects of downstream struts in the front frame of the engine are found to exasperate the problem, with the two fat service struts in the bypass duct generating significant spatial variations in the stator flow field. Strain gage measurements indicate that the stator vanes experiencing the highest vibratory strains correspond to the low static pressure regions of the fan stator assembly located approximately 90 degrees away from the two fat struts. The CFD analyses confirm the low static pressure sectors of the stator assembly are the passages in which the flow-induced NSV instability is initiated due to localized choking phenomena. The CFD predictions of the instability frequency are in reasonable agreement with the strain gage data, with the strain gage data indicating that the NSV response occurs at a frequency approximately 25% below the frequency of the fundamental bending mode. The flow patterns predicted by the CFD analyses are also correlated with the results of an engine flow visualization test to demonstrate the complex nature of the flow field.


2011 ◽  
Vol 66-68 ◽  
pp. 1878-1882
Author(s):  
Ming Lu Zhang ◽  
Yi Ren Yang ◽  
Chen Guang Fan ◽  
Li Lu

The aerodynamic performances of a high speed train will significant change under the action of the crosswind. Large eddy simulation (LES) was made to solve the flow around a simplified CRH2 high speed train with 250km/h and 350km/h under the influence of a crosswind with 28.4m/s base on the finite volume method and dynamic layering mesh method and three dimensional incompressible Navier-Stokes equations. Wind tunnel experimental method of static train with relative flowing air and dynamic mesh method of moving train were compared. The results of numerical simulation show that the flow field around train is completely different between Wind tunnel experiment and factual running. Many vortices will be produced on the leeside of the train with alternately vehicle bottom and back under the influence of a crosswind. The flow field around train is similar with different vehicle speed.


2016 ◽  
Vol 66 (6) ◽  
pp. 624 ◽  
Author(s):  
Anand Bhandarkar ◽  
Souraseni Basu ◽  
P. Manna ◽  
Debasis Chakraborty

<p>Combined external-internal flow simulation is required for the estimation of aerodynamic forces and moments of high speed air-breathing vehicle design. A wingless, X-tail configuration with asymmetrically placed rectangular air intake is numerically explored for which experimental data is available for different angles of attack. The asymmetrically placed air intakes and protrusions make the flow field highly three-dimensional and existing empirical relations are inadequate for preliminary design. Three dimensional Navier Stokes equations along with SST-kω turbulence model were solved with a commercial CFD solver to analyse the combined external and internal flow field of the configuration at different angles of attack. Estimated aerodynamic coefficients match well with experimental data and estimated drag coefficient are within 8.5 per cent of experimental data. Intake performance parameters were also evaluated for different angles of attack.</p>


2021 ◽  
Vol 16 (8) ◽  
pp. 1286-1297
Author(s):  
Taro Arikawa ◽  
Kenya Takahashi ◽  
Kojiro Suzuki ◽  
Naoto Kihara ◽  
Daishi Okamoto ◽  
...  

To evaluate the destruction of structures by tsunami forces, it is desirable to correctly evaluate not only the sustained forces due to the water level but also the impact forces generated at the tsunami front. To this end, it is necessary to conduct numerical simulations based on the three-dimensional Navier–Stokes equations, but the validity of the calculation results is not guaranteed. Therefore, this study compares the results obtained blind before confirming the experimental results and the results obtained by adjusting the parameters after confirming the experimental results. Recommendations are made to resolve issues that arise.


2014 ◽  
Vol 590 ◽  
pp. 69-73
Author(s):  
Yu Wang ◽  
Qiang Gao ◽  
Hai Lin Wang

In this paper, the wind-induced response of the ADSS is analyzed when the high-speed trains pass by. The wind flow field of the high-speed train is simulated based on the three-dimensional Reynolds-averaged Navier–Stokes equations, combined with the k-ε turbulence model. The result is shown that the wind load acting on the ADSS is quite low and the stress of the line clamp increases a little.


1996 ◽  
Vol 61 (6) ◽  
pp. 856-867 ◽  
Author(s):  
Oldřich Brůha ◽  
Ivan Fořt ◽  
Pavel Smolka ◽  
Milan Jahoda

The frequency of turbulent macroinstability occurrence was measured in liquids agitated in a cylindrical baffled vessel. As it has been proved by preceding experimental results of the authors, the stochastic quantity with frequency of occurrence of 10-1 to 100 s-1 is concerned. By suitable choosing the viscosity of liquids and frequency of impeller revolutins, the region of Reynolds mixing numbers was covered from the pure laminar up to fully developed turbulent regime. In addition to the equipment making it possible to record automatically the macroinstability occurrence, also the visualization method and videorecording were employed. It enabled us to describe in more detail the form of entire flow field in the agitated system and its behaviour in connection with the macroinstability occurrence. It follows from the experiments made that under turbulent regime of flow of agitated liquids the frequency of turbulent macroinstability occurrence is the same as the frequency of the primary circulation of agitated liquid.


Sign in / Sign up

Export Citation Format

Share Document