scholarly journals Investigation of turbulent boundary layer flows with adverse pressure gradient by means of 3D Lagrangian particle tracking with Shake-The-Box

Author(s):  
Matteo Novara ◽  
Daniel Schanz ◽  
Reinhard Geisler ◽  
Janos Agocs ◽  
Felix Eich ◽  
...  

A large-scale 3D Lagrangian particle tracking (LPT) investigation of a turbulent boundary layer (TBL) flow developing across different pressure gradient regions is presented in this study. Three high-speed multi-camera imaging systems, LED illumination and helium-filled soap bubbles (HFSB) tracers have been adopted to produce time-resolved sequences of particle images over a large volume encompassing approximately 3 m in the streamwise direction, 0:8 m in the spanwise direction and 0:25 m in the wall-normal direction. Individual tracers have been reconstructed and tracked within the imaged volume by means of the Shake-The-Box algorithm (STB, Schanz et al. (2016)); the FlowFit data assimilation algorithm (Gesemann et al. (2016)) has been used to evaluate the spatial velocity gradients and to interpolate the scattered LPT results onto a regular grid. Thanks to the large size of the investigated volume and to the time-resolved nature of the recorded images, the entire spatial extent of the large-scale coherent motions within the logarithmic region of the TBL (i.e. superstructures) could be captured and their dynamics investigated during their development over several boundary layer thickness in the streamwise direction, from the zero pressure gradient region (ZPG) to the adverse pressure gradient region (APG). Two free-stream velocities were investigated, namely 7 and 14m=s, corresponding to Ret ~ 3,000 and 5,000 respectively. The results confirm the location and scale of the elongated high- and low-momentum structures in the logarithmic region, as well as their meandering in the spanwise direction. Two-point correlation statistics show that the width and spacing of the superstructures are not affected by the transition from the ZPG to the APG region. The analysis of the instantaneous flow realizations from both a Lagrangian and Eulerian perspective indicates the presence of significant fluid particle elements exchange across the interfaces of the large-scale structures.

2014 ◽  
Vol 748 ◽  
pp. 36-84 ◽  
Author(s):  
Pranav Joshi ◽  
Xiaofeng Liu ◽  
Joseph Katz

AbstractThis study focuses on the effects of mean (favourable) and large-scale fluctuating pressure gradients on boundary layer turbulence. Two-dimensional (2D) particle image velocimetry (PIV) measurements, some of which are time-resolved, have been performed upstream of and within a sink flow for two inlet Reynolds numbers, ${Re}_{\theta }(x_{1})=3360$ and 5285. The corresponding acceleration parameters, $K$, are ${1.3\times 10^{-6}}$ and ${0.6\times 10^{-6}}$. The time-resolved data at ${Re}_{\theta }(x_{1})=3360$ enables us to calculate the instantaneous pressure distributions by integrating the planar projection of the fluid material acceleration. As expected, all the locally normalized Reynolds stresses in the favourable pressure gradient (FPG) boundary layer are lower than those in the zero pressure gradient (ZPG) domain. However, the un-scaled stresses in the FPG region increase close to the wall and decay in the outer layer, indicating slow diffusion of near-wall turbulence into the outer region. Indeed, newly generated vortical structures remain confined to the near-wall region. An approximate analysis shows that this trend is caused by higher values of the streamwise and wall-normal gradients of mean streamwise velocity, combined with a slightly weaker strength of vortices in the FPG region. In both boundary layers, adverse pressure gradient fluctuations are mostly associated with sweeps, as the fluid approaching the wall decelerates. Conversely, FPG fluctuations are more likely to accompany ejections. In the ZPG boundary layer, loss of momentum near the wall during periods of strong large-scale adverse pressure gradient fluctuations and sweeps causes a phenomenon resembling local 3D flow separation. It is followed by a growing region of ejection. The flow deceleration before separation causes elevated near-wall small-scale turbulence, while high wall-normal momentum transfer occurs in the ejection region underneath the sweeps. In the FPG boundary layer, the instantaneous near-wall large-scale pressure gradient rarely becomes positive, as the pressure gradient fluctuations are weaker than the mean FPG. As a result, the separation-like phenomenon is markedly less pronounced and the sweeps do not show elevated small-scale turbulence and momentum transfer underneath them. In both boundary layers, periods of acceleration accompanying large-scale ejections involve near-wall spanwise contraction, and a high wall-normal momentum flux at all elevations. In the ZPG boundary layer, although some of the ejections are preceded, and presumably initiated, by regions of adverse pressure gradients and sweeps upstream, others are not. Conversely, in the FPG boundary layer, there is no evidence of sweeps or adverse pressure gradients immediately upstream of ejections. Apparently, the mechanisms initiating these ejections are either different from those involving large-scale sweeps or occur far upstream of the peak in FPG fluctuations.


2013 ◽  
Vol 715 ◽  
pp. 477-498 ◽  
Author(s):  
Zambri Harun ◽  
Jason P. Monty ◽  
Romain Mathis ◽  
Ivan Marusic

AbstractResearch into high-Reynolds-number turbulent boundary layers in recent years has brought about a renewed interest in the larger-scale structures. It is now known that these structures emerge more prominently in the outer region not only due to increased Reynolds number (Metzger & Klewicki, Phys. Fluids, vol. 13(3), 2001, pp. 692–701; Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1–28), but also when a boundary layer is exposed to an adverse pressure gradient (Bradshaw, J. Fluid Mech., vol. 29, 1967, pp. 625–645; Lee & Sung, J. Fluid Mech., vol. 639, 2009, pp. 101–131). The latter case has not received as much attention in the literature. As such, this work investigates the modification of the large-scale features of boundary layers subjected to zero, adverse and favourable pressure gradients. It is first shown that the mean velocities, turbulence intensities and turbulence production are significantly different in the outer region across the three cases. Spectral and scale decomposition analyses confirm that the large scales are more energized throughout the entire adverse pressure gradient boundary layer, especially in the outer region. Although more energetic, there is a similar spectral distribution of energy in the wake region, implying the geometrical structure of the outer layer remains universal in all cases. Comparisons are also made of the amplitude modulation of small scales by the large-scale motions for the three pressure gradient cases. The wall-normal location of the zero-crossing of small-scale amplitude modulation is found to increase with increasing pressure gradient, yet this location continues to coincide with the large-scale energetic peak wall-normal location (as has been observed in zero pressure gradient boundary layers). The amplitude modulation effect is found to increase as pressure gradient is increased from favourable to adverse.


1990 ◽  
Vol 211 ◽  
pp. 285-307 ◽  
Author(s):  
Emerick M. Fernando ◽  
Alexander J. Smits

This investigation describes the effects of an adverse pressure gradient on a flat plate supersonic turbulent boundary layer (Mf ≈ 2.9, βx ≈ 5.8, Reθ, ref ≈ 75600). Single normal hot wires and crossed wires were used to study the Reynolds stress behaviour, and the features of the large-scale structures in the boundary layer were investigated by measuring space–time correlations in the normal and spanwise directions. Both the mean flow and the turbulence were strongly affected by the pressure gradient. However, the turbulent stress ratios showed much less variation than the stresses, and the essential nature of the large-scale structures was unaffected by the pressure gradient. The wall pressure distribution in the current experiment was designed to match the pressure distribution on a previously studied curved-wall model where streamline curvature acted in combination with bulk compression. The addition of streamline curvature affects the turbulence strongly, although its influence on the mean velocity field is less pronounced and the modifications to the skin-friction distribution seem to follow the empirical correlations developed by Bradshaw (1974) reasonably well.


2011 ◽  
Vol 681 ◽  
pp. 537-566 ◽  
Author(s):  
ROMAIN MATHIS ◽  
NICHOLAS HUTCHINS ◽  
IVAN MARUSIC

A model is proposed with which the statistics of the fluctuating streamwise velocity in the inner region of wall-bounded turbulent flows are predicted from a measured large-scale velocity signature from an outer position in the logarithmic region of the flow. Results, including spectra and all moments up to sixth order, are shown and compared to experimental data for zero-pressure-gradient flows over a large range of Reynolds numbers. The model uses universal time-series and constants that were empirically determined from zero-pressure-gradient boundary layer data. In order to test the applicability of these for other flows, the model is also applied to channel, pipe and adverse-pressure-gradient flows. The results support the concept of a universal inner region that is modified through a modulation and superposition of the large-scale outer motions, which are specific to the geometry or imposed streamwise pressure gradient acting on the flow.


1966 ◽  
Vol 26 (3) ◽  
pp. 481-506 ◽  
Author(s):  
A. E. Perry

The results of a detailed mean velocity survey of a smooth-wall turbulent boundary layer in an adverse pressure gradient are described. Close to the wall, a variety of profiles shapes were observed. Progressing in the streamwise direction, logarithmic, ½-power, linear and$\frac{3}{2}$-power distributions seemed to form, and generally each predominated at a different stage of the boundary-layer development. It is believed that the phenomenon occurred because of the nature of the pressure gradient imposed (an initially high gradient which fell to low values as the boundary layer developed) and attempts are made to describe the flow by an extension of the regional similarity hypothesis proposed by Perry, Bell & Joubert (1966). Data from other sources is limited but comparisons with the author's results are encouraging.


1991 ◽  
Vol 226 ◽  
pp. 91-123 ◽  
Author(s):  
M. Dianat ◽  
Ian P. Castro

This paper presents and discusses the results of an extensive experimental investigation of a flat-plate turbulent boundary subjected to an adverse pressure gradient sufficiently strong to lead to the formation of a large separated region. The pressure gradient was produced by applying strong suction through a porous cylinder fitted with a rear flap and mounted above the boundary layer and with its axis in the spanwise direction. Attention is concentrated on the structure of the turbulent flow within the separated region and it is shown that many features are similar to those that occur in separated regions produced in a very dissimilar manner. These include the fact that structure parameters, like Reynolds stress ratios, respond markedly to the re-entrainment of turbulent fluid transported upstream from the reattachment region, the absence of any logarithmic region in the thin wall boundary layer beneath the recirculation zone and the lack of any effective viscous scaling in this wall region, and the presence of a significant low-frequency motion having timescales much longer than those of the large-eddy structures around reattachment.Similarities with boundary layers separating under the action of much weaker pressure gradients are also found, despite the fact that the nature of the flow around separation is quite different. These similarities and also some noticeable differences are discussed in the paper, which concludes with some inferences concerning the application of turbulence models to separated flows.


2012 ◽  
Vol 225 ◽  
pp. 109-117 ◽  
Author(s):  
Zambri Harun ◽  
Mohamad Dali Isa ◽  
Mohammad Rasidi Rasani ◽  
Shahrir Abdullah

Single normal hot-wire measurements of the streamwise component of velocity were taken in boundary layer flows subjected to pressure gradients at matched friction Reynolds numbers Reτ ≈ 3000. To evaluate spatial resolution effects, the sensor lengths are varied in both adverse pressure gradient (APG) and favorable pressure gradient (FPG). A control boundary layer flow in zero pressure gradient ZPG is also presented. It is shown here that, when the sensor length is maintained a constant value, in a contant Reynolds number, the near-wall peak increases with (adverse) pressure gradient. Both increased contributions of the small- and especially large-scale features are attributed to the increased broadband turbulence intensities. The two-mode increase, one centreing in the near-wall region and the other one in the outer region, makes spatial resolution studies in boundary layer flow more complicated. The increased large-scale features in the near-wall region of an APG flow is similar to large-scales increase due to Reynolds number in ZPG flow. Additionally, there is also an increase of the small-scales in the near-wall region when the boundary layer is exposed to adverse pressure gradient (while the Reynolds number is constant). In order to collapse the near-wall peaks for APG, ZPG and FPG flows, the APG flow has to use the longest sensor and conversely, the FPG has to use the shortest sensor. This study recommends that the empirical prediction by Huthins et. al. (2009) to be reevaluated if pressure gradient flows were to be considered such that the magnitude of the near-wall peak is also a function of the adverse pressure gradient parameter.


Sign in / Sign up

Export Citation Format

Share Document