Modeling Of Absorption Process In Packing Column Operating In The Emulsification Mode

2021 ◽  
Vol 25 (3) ◽  
pp. 24-29
Author(s):  
A.B. Golovanchikov ◽  
N.A. Merentsov ◽  
A.V. Kachanov

A new approach to the mathematical modeling of packed absorption columns operating in the emulsification mode, which makes it possible to estimate the actual surface of the contact phase of the mass transfer products is presented. Equations for calculating the average diameter of the gas phase bubbles, the thickness of the liquid film between the bubbles in the packed absorption mass-exchange column operating in the emulsification mode are derived on the basis of the equality of the formation energy of the phase interface and the base of their overcoming the hydraulic resistance. A comparison of technological and geometric parameters of a typical packed absorption column with Raschig rings and a column with S-Aisi316Tiε-0.82 packing material based on the metalworked wastes.

1987 ◽  
Vol 109 (2) ◽  
pp. 89-93 ◽  
Author(s):  
P. Gandhidasan ◽  
M. Rifat Ullah ◽  
C. F. Kettleborough

Heat and mass transfer analysis between a desiccant-air contact system in a packed tower has been studied in application to air dehumidification employing liquid desiccant, namely calcium chloride. Ceramic 2 in. Raschig rings are used as the packing material. To predict the tower performance, a steady-state model which considers the heat and mass transfer resistances of the gas phase and the mass transfer resistance of the liquid phase is developed. The governing equations are solved on a digital computer to simulate the performance of the tower. The various parameters such as the effect of liquid concentration and temperature, air temperature and humidity and the rates of flow of air and liquid affecting the tower performance have been discussed.


1990 ◽  
Vol 206 ◽  
Author(s):  
Tongsan D. Xiao ◽  
Peter R. Strutt ◽  
Kenneth E. Gonsalves

ABSTRACTA new approach has been developed for the synthesis of nanoscale ceramic powder materials from liquid organosilazane precursors. This technique, by exploiting fast kinetic chemical and physical reactions, makes it possible to synthesize significant quantities of material in a relatively short time. In the current approach aerosols of a silazane monomer, (CH3SiHNH)n, (n = 3 or 4), of mol. wt. 280–320, are injected into the beam of a cw industrial CO2 laser to obtain nanoscale ceramic powders. Injection of the aerosol into the laser-beam results in a high-temperature plume. Rapid condensation of the molecular precursor species emerging from the laser plume results in the formation of preceramic polymer particles, with an average diameter of 62 nm. One attractive feature of this process is that 70 wt.% of the liquid precursor is converted into nanoscale powders. Another feature is that only a further 10 wt.% loss occurs during post thermal treatment to form the end-product.


2004 ◽  
Vol 59 (11-12) ◽  
pp. 1512-1518 ◽  
Author(s):  
K. Koch ◽  
H. Schnöckel

The cation Al2Cp*+ descending from the tetrahedral Al4Cp*4 Cluster after using LDI as ionisation method in an FT-ICR mass spectrometer reacts with Cl2 in the gas phase. The investigation of this reaction together with quantum chemical calculations gives a new approach to the question of existence and stability of an aluminum-aluminum double bond.


EKUILIBIUM ◽  
2011 ◽  
Vol 10 (2) ◽  
Author(s):  
Endang Kwartiningsih ◽  
Arif Jumari

<p><strong><em>Abstract:</em></strong><strong><em> </em></strong><em>Gas purification from the content of H<sub>2</sub>S using  Fe-EDTA (Iron Chelated Solution) gave  several advantages. The advantages were  the absorbent solution can be regenerated that means  a cheap operation cost,  the separated sulfur was a solid that is easy to handle and is save to be disposal to environment. This research was done by simulation and experimental. The simulation step was done by mathematical model arrangement representing the absorption process in packed column through mass transfer arrangement such as mass transfer equations and chemical reaction. The experimental step was done with the making of Fe-EDTA solution from FeCl<sub>2</sub> and EDTA. Then Fe-EDTA solution was flown in counter current packed column that was contacted with H<sub>2</sub>S in the methane gas. By comparing gas composition result of experiment and simulation, the value of mass transfer coefficient in gas phase ( k<sub>Ag</sub>a), mass transfer coefficient in liquid phase (k<sub>Al</sub>a) and the reaction rate constant ( k) were found. The values of mass transfer coefficient in liquid phase (k<sub>Al</sub>a) were lower than values of mass transfer coefficient in gas phase (k<sub>Ag</sub>a) and the reaction rate constant (k). It meant that H<sub>2</sub>S absorption  process using Fe-EDTA absorbent solution was determined by mass transfer process in liquid phase. The higher flow rate of absorbent, the higher value of mass transfer coefficient in liquid phase. </em><em>The smaller packing diameter, the higher value of mass transfer coefficient in liquid phase.From analysis of dimension, the relation of dimensionless number between Sherwood number and flow rate of absorbent, packing diameter was</em><strong></strong></p><p> <strong><em>Keywords:</em></strong><strong><em> </em></strong><em>chemical reaction, Fe-EDTA, H<sub>2</sub>S absorption, mass transfer</em></p>


2007 ◽  
Vol 97 (4) ◽  
pp. 481-490 ◽  
Author(s):  
D. Gabriel ◽  
J.P. Maestre ◽  
L. Martín ◽  
X. Gamisans ◽  
J. Lafuente

Author(s):  
S. Wittig ◽  
J. Himmelsbach ◽  
B. Noll ◽  
H. J. Feld ◽  
W. Samenfink

Detailed measurements of wavy liquid films driven by the shear stress of turbulent air flow are obtained for different air temperatures, air velocities and flow rates of the liquid. The experimental conditions are chosen from characteristic data of liquid film flow in prefilming airblast atomizers and film vaporization employing combustors. For the measurement of the local film thickness and film velocity a new optical instrument — based on the light absorption of the liquid — has been developed, which can be used at high temperatures with evaporation. The measured data of the gas phase and the liquid film are compared with the results of a numerical code using a laminar as well as a turbulent model for the film flow and a standard numerical finite volume code for the gas phase. The results utilizing the two models for the liquid film show that the film exhibits laminar rather then turbulent characteristics under a wide range of flow conditions. This is of considerable interest when heat is transferred across the film by heating or cooling of the wall. With this information the optical instrument can also be used to determine the local shear stress of the gas phase at the phase interface. Using time averaged values for the thickness, the velocity and the roughness of the film the code leads to relatively accurate predictions of the interaction of the liquid film with the gas phase.


Sign in / Sign up

Export Citation Format

Share Document