scholarly journals Evaluation of Energy-Efficiency Problem in Orthogonal Frequency Division Multiple Access Cellular Networks

Author(s):  
İlhan Baştürk
2019 ◽  
Vol 9 (23) ◽  
pp. 5034 ◽  
Author(s):  
Abuzar B. M. Adam ◽  
Xiaoyu Wan ◽  
Zhengqiang Wang

In this paper, we investigate the energy efficiency (EE) maximization in multi-cell multi-carrier non-orthogonal multiple access (MCMC-NOMA) networks. To achieve this goal, an optimization problem is formulated then the solution is divided into two parts. First, we investigate the inter-cell interference mitigation and then we propose an auction-based non-cooperative game for power allocation for base stations. Finally, to guarantee the rate requirements for users, power is allocated fairly to users. The simulation results show that the proposed scheme has the best performance compared with the existing NOMA-based fractional transmit power allocation (FTPA) and the conventional orthogonal frequency division multiple access (OFDMA).


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Tao Wang ◽  
Chao Ma ◽  
Yanzan Sun ◽  
Shunqing Zhang ◽  
Yating Wu

This paper studies the energy efficiency (EE) maximization for an orthogonal frequency division multiple access (OFDMA) downlink network aided by a relay station (RS) with subcarrier pairing. A highly flexible transmission protocol is considered, where each transmission is executed in two time slots. Every subcarrier in each slot can either be used in direct mode or be paired with a subcarrier in another slot to operate in relay mode. The resource allocation (RA) in such a network is highly complicated, because it has to determine the operation mode of subcarriers, the assignment of subcarriers to users, and the power allocation of the base station and RS. We first propose a mathematical description of the RA strategy. Then, a RA algorithm is derived to find the globally optimum RA to maximize the EE. Finally, we present extensive numerical results to show the impact of minimum required rate of the network, the user number, and the relay position on the maximum EE of the network.


Author(s):  
. Geetanjli

The power control in CDMA systems, grant numerous users to share resources of the system uniformly between each other, leading to expand capacity. With convenient power control, capacity of CDMA system is immense in contrast of frequency division multiple access (FDMA) and time division multiple access (TDMA). If power control is not achieved numerous problems such as the near-far effect will start to monopolize and consequently will reduce the capacity of the CDMA system. However, when the power control in CDMA systems is implemented, it allows numerous users to share resources of the system uniformly between themselves, leading to increased capacity For power control in CDMA system optimization algorithms i.e. genetic algorithm & particle swarm algorithm can be used which regulate a convenient power vector. These power vector or power levels are dogged at the base station and announce to mobile units to alter their transmitting power in accordance to these levels. The performances of the algorithms are inspected through both analysis and computer simulations, and compared with well-known algorithms from the literature.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1236
Author(s):  
Alessandro Cidronali ◽  
Edoardo Ciervo ◽  
Giovanni Collodi ◽  
Stefano Maddio ◽  
Marco Passafiume ◽  
...  

The present paper analyzes the performance of localization systems, based on dual-band Direction of Arrival (DoA) approach, in multi-path affected scenarios. The implemented DoA estimation, which belongs to the so-called Space and Frequency Division Multiple Access (SFDMA) technique, takes advantage of the use of two uncorrelated communication carrier frequencies, as already demonstrated by the authors. Starting from these results, this paper provides, first, the methodology followed to describe the localization system in the proposed simulation environment, and, as a second step, describes how multi-path effects may be taken into account through a set of full-wave simulations. The latter follows an approach based on the two-ray model. The validation of the proposed approach is demonstrated by simulations over a wide range of virtual scenarios. The analysis of the results highlights the ability of the proposed approach to describe multi-path effects and confirms enhancements in DoA estimation as experimentally evaluated by the same authors. To further assess the performance of the aforementioned simulation environment, a comparison between simulated and measured results was carried out, confirming the capability to predict DoA performance.


2021 ◽  
Vol 11 (2) ◽  
pp. 716
Author(s):  
Ruibiao Chen ◽  
Fangxing Shu ◽  
Kai Lei ◽  
Jianping Wang ◽  
Liangjie Zhang

Non-orthogonal multiple access (NOMA) has been considered a promising technique for the fifth generation (5G) mobile communication networks because of its high spectrum efficiency. In NOMA, by using successive interference cancellation (SIC) techniques at the receivers, multiple users with different channel gain can be multiplexed together in the same subchannel for concurrent transmission in the same spectrum. The simultaneously multiple transmission achieves high system throughput in NOMA. However, it also leads to more energy consumption, limiting its application in many energy-constrained scenarios. As a result, the enhancement of energy efficiency becomes a critical issue in NOMA systems. This paper focuses on efficient user clustering strategy and power allocation design of downlink NOMA systems. The energy efficiency maximization of downlink NOMA systems is formulated as an NP-hard optimization problem under maximum transmission power, minimum data transmission rate requirement, and SIC requirement. For the approximate solution with much lower complexity, we first exploit a quick suboptimal clustering method to assign each user to a subchannel. Given the user clustering result, the optimal power allocation problem is solved in two steps. By employing the Lagrangian multiplier method with Karush–Kuhn–Tucker optimality conditions, the optimal power allocation is calculated for each subchannel. In addition, then, an inter-cluster dynamic programming model is further developed to achieve the overall maximum energy efficiency. The theoretical analysis and simulations show that the proposed schemes achieve a significant energy efficiency gain compared with existing methods.


2021 ◽  
Vol 485 ◽  
pp. 126728
Author(s):  
Jie Lian ◽  
Yan Gao ◽  
Peng Wu ◽  
Guolei Zhu ◽  
Yingmin Wang

Sign in / Sign up

Export Citation Format

Share Document