scholarly journals Analysis of Dual-Band Direction of Arrival Estimation in Multipath Scenarios

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1236
Author(s):  
Alessandro Cidronali ◽  
Edoardo Ciervo ◽  
Giovanni Collodi ◽  
Stefano Maddio ◽  
Marco Passafiume ◽  
...  

The present paper analyzes the performance of localization systems, based on dual-band Direction of Arrival (DoA) approach, in multi-path affected scenarios. The implemented DoA estimation, which belongs to the so-called Space and Frequency Division Multiple Access (SFDMA) technique, takes advantage of the use of two uncorrelated communication carrier frequencies, as already demonstrated by the authors. Starting from these results, this paper provides, first, the methodology followed to describe the localization system in the proposed simulation environment, and, as a second step, describes how multi-path effects may be taken into account through a set of full-wave simulations. The latter follows an approach based on the two-ray model. The validation of the proposed approach is demonstrated by simulations over a wide range of virtual scenarios. The analysis of the results highlights the ability of the proposed approach to describe multi-path effects and confirms enhancements in DoA estimation as experimentally evaluated by the same authors. To further assess the performance of the aforementioned simulation environment, a comparison between simulated and measured results was carried out, confirming the capability to predict DoA performance.

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Min Huang ◽  
Bin Zheng ◽  
Tong Cai ◽  
Xiaofeng Li ◽  
Jian Liu ◽  
...  

Abstract Metasurfaces, interacted with artificial intelligence, have now been motivating many contemporary research studies to revisit established fields, e.g., direction of arrival (DOA) estimation. Conventional DOA estimation techniques typically necessitate bulky-sized beam-scanning equipment for signal acquisition or complicated reconstruction algorithms for data postprocessing, making them ineffective for in-situ detection. In this article, we propose a machine-learning-enabled metasurface for DOA estimation. For certain incident signals, a tunable metasurface is controlled in sequence, generating a series of field intensities at the single receiving probe. The perceived data are subsequently processed by a pretrained random forest model to access the incident angle. As an illustrative example, we experimentally demonstrate a high-accuracy intelligent DOA estimation approach for a wide range of incident angles and achieve more than 95% accuracy with an error of less than 0.5 ° $0.5{\degree}$ . The reported strategy opens a feasible route for intelligent DOA detection in full space and wide band. Moreover, it will provide breakthrough inspiration for traditional applications incorporating time-saving and equipment-simplified majorization.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Feng-Gang Yan ◽  
Jun Wang ◽  
Shuai Liu ◽  
Yi Shen ◽  
Ming Jin

A low-complexity algorithm is presented to dramatically reduce the complexity of the multiple signal classification (MUSIC) algorithm for direction of arrival (DOA) estimation, in which both tasks of eigenvalue decomposition (EVD) and spectral search are implemented with efficient real-valued computations, leading to about 75% complexity reduction as compared to the standard MUSIC. Furthermore, the proposed technique has no dependence on array configurations and is hence suitable for arbitrary array geometries, which shows a significant implementation advantage over most state-of-the-art unitary estimators including unitary MUSIC (U-MUSIC). Numerical simulations over a wide range of scenarios are conducted to show the performance of the new technique, which demonstrates that with a significantly reduced computational complexity, the new approach is able to provide a close accuracy to the standard MUSIC.


2021 ◽  
Vol 13 (14) ◽  
pp. 2681
Author(s):  
Xiuyi Zhao ◽  
Ying Yang ◽  
Kun-Shan Chen

Conventional direction-of-arrival (DOA) estimation methods are primarily used in point source scenarios and based on array signal processing. However, due to the local scattering caused by sea surface, signals observed from radar antenna cannot be regarded as a point source but rather as a spatially dispersed source. Besides, with the advantages of flexibility and comparably low cost, synthetic aperture radar (SAR) is the present and future trend of space-based systems. This paper proposes a novel DOA estimation approach for SAR systems using the simulated radar measurement of the sea surface at different operating frequencies and wind speeds. This article’s forward model is an advanced integral equation model (AIEM) to calculate the electromagnetic scattered from the sea surface. To solve the DOA estimation problem, we introduce a convolutional neural network (CNN) framework to estimate the transmitter’s incident angle and incident azimuth angle. Results demonstrate that the CNN can achieve a good performance in DOA estimation at a wide range of frequencies and sea wind speeds.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 132 ◽  
Author(s):  
Yifei Liu ◽  
Yuan Zhao ◽  
Jun Zhu ◽  
Jun Wang ◽  
Bin Tang

This paper proposes a switched-element direction finding (SEDF) system based Direction of Arrival (DOA) estimation method for un-cooperative wideband Orthogonal Frequency Division Multi Linear Frequency Modulation (OFDM-LFM) radar signals. This method is designed to improve the problem that most DOA algorithms occupy numbers of channel and computational resources to handle the direction finding for wideband signals. Then, an iterative spatial parameter estimator is designed through deriving the analytical steering vector of the intercepted OFDM-LFM signal by the SEDF system, which can remarkably mitigate the dispersion effect that is caused by high chirp rate. Finally, the algorithm flow and numerical simulations are given to corroborate the feasibility and validity of our proposed DOA method.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2566
Author(s):  
Jarosław Magiera

This paper presents a method for the joint detection and direction of arrival (DOA) estimation of low probability of detection (LPD) signals. The proposed approach is based on using the antenna array to receive spread-spectrum signals hidden below the noise floor. Array processing exploits the spatial correlation between phase-delayed copies of the signal and allows us to evaluate the parameter used to make the decision about the presence of LPD transmission. The DOA estimation is based on the covariance between signals received by sensors for the fixed geometry of the antenna array. Moreover, the paper provides a method for mitigating narrowband interferences prior to signal detection. The presented methods were verified through simulations which proved that the confident detection of a one-second transmission in an additive white Gaussian noise channel is possible even when the noise is 24 dB higher than the power of the received signal. The performance of DOA estimation is analyzed in a wide range of signal-to-noise and interference-to-noise ratios. It is found that the DOA may be estimated with an RMS error not exceeding 10 degrees, even if interference occupies 15% of the analyzed frequency band.


Author(s):  
. Geetanjli

The power control in CDMA systems, grant numerous users to share resources of the system uniformly between each other, leading to expand capacity. With convenient power control, capacity of CDMA system is immense in contrast of frequency division multiple access (FDMA) and time division multiple access (TDMA). If power control is not achieved numerous problems such as the near-far effect will start to monopolize and consequently will reduce the capacity of the CDMA system. However, when the power control in CDMA systems is implemented, it allows numerous users to share resources of the system uniformly between themselves, leading to increased capacity For power control in CDMA system optimization algorithms i.e. genetic algorithm & particle swarm algorithm can be used which regulate a convenient power vector. These power vector or power levels are dogged at the base station and announce to mobile units to alter their transmitting power in accordance to these levels. The performances of the algorithms are inspected through both analysis and computer simulations, and compared with well-known algorithms from the literature.


PIERS Online ◽  
2007 ◽  
Vol 3 (8) ◽  
pp. 1160-1164 ◽  
Author(s):  
Konstantinos A. Gotsis ◽  
E. G. Vaitsopoulos ◽  
Katherine Siakavara ◽  
J. N. Sahalos

2015 ◽  
Vol 23 (04) ◽  
pp. 1540007 ◽  
Author(s):  
Guolong Liang ◽  
Wenbin Zhao ◽  
Zhan Fan

Direction of arrival (DOA) estimation is of great interest due to its wide applications in sonar, radar and many other areas. However, the near-field interference is always presented in the received data, which may result in degradation of DOA estimation. An approach which can suppress the near-field interference and preserve the far-field signal desired by using a spatial matrix filter is proposed in this paper and some typical DOA estimation algorithms are adjusted to match the filtered data. Simulation results show that the approach can improve capability of DOA estimation under near-field inference efficiently.


2021 ◽  
Vol 11 (14) ◽  
pp. 6246
Author(s):  
Paweł Komorowski ◽  
Patrycja Czerwińska ◽  
Mateusz Kaluza ◽  
Mateusz Surma ◽  
Przemysław Zagrajek ◽  
...  

Recently, one of the most commonly discussed applications of terahertz radiation is wireless telecommunication. It is believed that the future 6G systems will utilize this frequency range. Although the exact technology of future telecommunication systems is not yet known, it is certain that methods for increasing their bandwidth should be investigated in advance. In this paper, we present the diffractive optical elements for the frequency division multiplexing of terahertz waves. The structures have been designed as a combination of a binary phase grating and a converging diffractive lens. The grating allows for differentiating the frequencies, while the lens assures separation and focusing at the finite distance. Designed structures have been manufactured from polyamide PA12 using the SLS 3D printer and verified experimentally. Simulations and experimental results are shown for different focal lengths. Moreover, parallel data transmission is shown for two channels of different carrier frequencies propagating in the same optical path. The designed structure allowed for detecting both signals independently without observable crosstalk. The proposed diffractive elements can work in a wide range of terahertz and sub-terahertz frequencies, depending on the design assumptions. Therefore, they can be considered as an appealing solution, regardless of the band finally used by the future telecommunication systems.


Sign in / Sign up

Export Citation Format

Share Document