Seasonal Abundance and Population Dynamics of a Bamboo Aphid, Takecallis arundinaria (Homoptera: Aphididae)

1990 ◽  
Vol 25 (4) ◽  
pp. 526-534 ◽  
Author(s):  
Mark A. Coffelt ◽  
Peter B. Schultz

The anholocyclic life cycle of the aphid Takecallis arundinaria (Essig) on golden stem bamboo, Phyllostachys aurea (Carrie're) was investigated in 1987 – 1988. Aphid populations peaked from March – May, declined from June – October, and peaked again in December. Aphid population dynamics were strongly influenced by climatic conditions. When aphid populations were at constant or rising levels, significantly more nymphs were found in the southern and eastern quadrants, than in the northern and western quadrants. This directionality may have allowed T. arundinaria populations to be exposed to increased sunlight and decreased winds during the winter and early spring periods. Alate viviparae had a mean fecundity of 147 nymphs and a longevity of 46.5 days. Predators were few and no parasites were found. An alternate host study revealed no aphids on yellow sticky traps placed on nine woody plant species.

Fire Ecology ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Jan W. van Wagtendonk ◽  
Peggy E. Moore ◽  
Julie L. Yee ◽  
James A. Lutz

Abstract Background The effects of climate on plant species ranges are well appreciated, but the effects of other processes, such as fire, on plant species distribution are less well understood. We used a dataset of 561 plots 0.1 ha in size located throughout Yosemite National Park, in the Sierra Nevada of California, USA, to determine the joint effects of fire and climate on woody plant species. We analyzed the effect of climate (annual actual evapotranspiration [AET], climatic water deficit [Deficit]) and fire characteristics (occurrence [BURN] for all plots, fire return interval departure [FRID] for unburned plots, and severity of the most severe fire [dNBR]) on the distribution of woody plant species. Results Of 43 species that were present on at least two plots, 38 species occurred on five or more plots. Of those 38 species, models for the distribution of 13 species (34%) were significantly improved by including the variable for fire occurrence (BURN). Models for the distribution of 10 species (26%) were significantly improved by including FRID, and two species (5%) were improved by including dNBR. Species for which distribution models were improved by inclusion of fire variables included some of the most areally extensive woody plants. Species and ecological zones were aligned along an AET-Deficit gradient from cool and moist to hot and dry conditions. Conclusions In fire-frequent ecosystems, such as those in most of western North America, species distribution models were improved by including variables related to fire. Models for changing species distributions would also be improved by considering potential changes to the fire regime.


1969 ◽  
Vol 47 (12) ◽  
pp. 1851-1855 ◽  
Author(s):  
E. S. Telfer

Prediction equations are presented for use in estimating total aboveground weight and maximum leaf weight for 22 species of woody plants. Stem diameter at the ground line was found to be closely correlated with both total and leaf weights. This diameter was therefore used in the equations as the measurement from which weights were predicted.


2021 ◽  
Vol 5 (2) ◽  
pp. 64-72
Author(s):  
Danesha Seth Carley ◽  
Lauren A Gragg ◽  
Matthew J Matthew ◽  
Thomas W Rufty

Sign in / Sign up

Export Citation Format

Share Document