Distribution of Trialeurodes vaporariorum and Bemisia tabaci (Homoptera: Aleyrodidae) on Some Greenhouse-grown Ornamental Plants

1993 ◽  
Vol 28 (1) ◽  
pp. 102-112 ◽  
Author(s):  
Tong-Xian Liu ◽  
Ronald D. Oetting ◽  
G. David Buntin

The within-plant and between-plant distributions of all stages of both greenhouse whitefly (GHWF), Trialeurodes vaporariorum (Westwood) on poinsettia, chrysanthemum and gerbera daisy, and sweetpotato whitefly (SPWF), Bemisia tabaci (Gennadius) on poinsettia, were examined using Taylor's power law (s2 = amb) and Iwao's patchiness () methods. We found that all developmental stages of the two whitefly species on all plants examined were aggregated within and between plants. The vertical distribution of whitefly stages is stratified among leaves within the plant with respect to leaf age rather than relative height of the leaves on the plants. Most of the adults, eggs and the first-instar nymphs occurred on young leaves. The second- and third-instar nymphs occurred on middle-aged leaves, and most of the pupae and empty pupal cases occurred on middle-aged and older leaves. Comparison of whitefly counts from the different combinations of top, middle, and bottom leaves with the whole-plant counts on poinsettia was correlated and these leaves can be sampled as an indication of population levels within a greenhouse population.

1991 ◽  
Vol 69 (11) ◽  
pp. 2482-2488 ◽  
Author(s):  
D. W. Kelly ◽  
P. R. Hicklenton ◽  
E. G. Reekie

Geranium plants were grown from seed in chambers maintained at 350 or 1000 μL∙L−1 CO2. Phtopsynthesis as affected by leaf age and by leaf position was determined. Elevated CO2 enhanced photosynthesis to the greatest extent in middle-aged leaves; very young leaves exhibited little enhancement, and net photosynthesis in the oldest leaves was depressed by elevated CO2. Temporary increases in net photosynthesis (relative to leaves developed at high CO2) resulted when young leaves grown at 350 μL∙L−1 CO2 were switched to 1000 μL∙L−1 CO2. Leaves switched later in development exhibited permanent enhancement. Middle-aged leaves exhibited a temporary depression followed by permanent enhancement. Leaves developed at high CO2 and switched to low CO2 did not exhibit any photosynthetic depression relative to plants grown continuously at low CO2. Similarly, leaves developed at low CO2, switched to high CO2 for various lengths of time, and returned to low CO2 showed no photosynthetic depression. Leaves developed at low CO2 and switched to high CO2 exhibited increases in specific leaf weight and leaf thickness. The increase in leaf thickness was proportional to length of time spent at high CO2. High CO2 depressed the rate at which stomata developed but did not affect final stomatal density. Results suggest that photosynthesis at low CO2 was limited by CO2 regardless of developmental environment, whereas photosynthesis at high CO2 was limited by the developmental characteristics of the leaf. Further, both biochemical and structural modifications appear to be involved in this response. Because of the very different responses of young versus old leaves, future studies should be careful to consider leaf age in assessing response to elevated CO2. Key words: carbon dioxide, elevated CO2, photosynthesis, geranium.


Author(s):  
Meriem Dahmane ◽  
Gahdab Chakali

The leafminer Phyllocnistis citrella (Stainton, 1856) (Lepidoptera: Gracillariidae), is considered a potential serious pest of citrus in Algeria. The aim of this work was to investigate the relationship between the ecophases of the citrus leafminer and the leaf surface of the Washington navel citrus variety. Practically all the examined leaves of the young shoots were occupied by at least a developmental stage of this insect. More than 80% of the leafminer ecophases were distributed on the lower surfaces of the leaves. A relationship is highlighted between the leaf surfaces and the stages evolution of citrus leafminer. The choice of area laying by females is decisive for the survival and evolution of stages of development of the insect in relationship with leaf age. The analysis of the eggs distribution revealed that young leaves, with leaf surface smaller than 2 cm², were significantly preferred by females for oviposition. However, the larvae were abundant on leaf surfaces smaller than 6 cm² which provide a favorable environment for the development of larvae in order to realize their respective gallery. The pupal stage was observed almost uniformly on all the analyzed area classes. These results could contribute to the guidelines for pest risk assessment highlighting the intervention for the protection of citrus orchards against heavy infestations of Phyllocnistis citrella.


Insects ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
Tao Wang ◽  
Michael A. Keller

Eretmocerus warrae (Hymenoptera: Aphelinidae) is a specialist parasitoid that is used for the control of the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). We investigated how temperature affects the body-size, life-time oviposition, and longevity of E. warrae at different stages of life. The body-sizes of both this parasitoid and its host are influenced by temperature. Body-volume indices that reflect body-sizes fell by 47.7 % in T. vaporariorum compared with 57.6% in E. warrae when temperature increased from 20 to 32 °C. The life-time oviposition of female adults of E. warrae that grew at the immature developmental temperature of 20 °C was 86 ± 22 eggs, more than 66 ± 11 eggs at 26 °C, and 65 ± 23 eggs at 32 °C. Besides the influence on fecundity, temperature also influences the oviposition behaviour at the adult stage. More eggs were oviposited at 20 and 26 °C than at 32 °C. Higher temperatures reduced survival in the immature developmental stages and longevity in adults. Adult females lived for a maximum of 8.9 ± 1.8 days at 20 °C and laid a maximum of 97.4 ± 23.2 eggs when reared at 20 °C and maintained at 26 °C as adults. Adult body-size is positively correlated with life-time oviposition but not adult longevity. The results imply that temperature influences the nature of interactions between a parasitoid and its host. Larger wasps can live longer and parasitise more hosts, which should improve their performance as biological control agents.


2019 ◽  
Vol 112 (4) ◽  
pp. 1611-1617 ◽  
Author(s):  
Sun-Ran Cho ◽  
Hyun-Na Koo ◽  
Soeun Shin ◽  
Hyun Kyung Kim ◽  
Jong-Heum Park ◽  
...  

Abstract Whitefly pests, including the sweetpotato whitefly, Bemisia tabaci (Gennadius), and the greenhouse whitefly, Trialeurodes vaporariorum (Westwood), are economically important in agriculture. With the annual growth of the domestic fresh fruit export market, various quarantine treatment methods are being used to export strawberries of better quality. The objective of the present study was to evaluate the effects of gamma rays on the development and reproductive sterility of B. tabaci and T. vaporariorum. In both species, the eggs were completely inhibited from hatching at 50 Gy, and the emergence of third-instar nymphs was completely suppressed at 150 Gy. Some adult B. tabaci and T. vaporariorum spawning occurred at 100 and 70 Gy, respectively; however, at these irradiation levels, F1 hatchability was completely inhibited. Dosimetry results showed that the penetrating power of gamma ray in the strawberry-filled box was the lowest at the mid-box position. Therefore, B. tabaci and T. vaporariorum were placed in the middle of the strawberry-filled box and irradiated. A gamma-ray irradiation of 100 Gy suppressed the development and reproduction of eggs and adults in both B. tabaci and T. vaporariorum. Our data suggest that at least 100 Gy should be used for the control of these two species of whitefly for strawberry export.


2021 ◽  
Vol 13 (14) ◽  
pp. 7745
Author(s):  
Daniela Baldantoni ◽  
Alessandro Bellino

With a view of shedding light on the accumulation capability of the epigeous organs of common reed (Phragmites australis), employed worldwide in metal biomonitoring, an accumulation study of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn was performed, focusing on leaves belonging to different whorls and culms. To this end, in five sampling sites on the littoral zone of the volcanic Lake Averno (Italy), and in one occasion (autumn) before plant senescence, leaves of different ages and culms were collected and analyzed for metal concentrations. In terms of the suitability for biomonitoring, culms demonstrated poor performances in relation to the low metal accumulation and the difficulties in sampling and processing, whereas leaves proved their effectiveness in highlighting whole plant exposure. Since the accumulation degree of Cr, Cu, Fe and Zn is unaffected by leaf age, the pooling of leaves from different whorls is advisable to improve the representativeness of samplings. This strategy becomes mandatory in the case of Ni, the non-monotonic age-dependent variations of which would affect the derivation of contamination gradients otherwise. For Mn, Cd and Pb, the accumulation patterns strictly dependent on age can instead be exploited in selecting the sensitivity of biomonitoring by focusing on the organs where they are preferentially accumulated: old leaves for Mn and young leaves for Cd and Pb.


2005 ◽  
Vol 74 (2) ◽  
pp. 75-87 ◽  
Author(s):  
A. Van Delden ◽  
O. Carisse

A greenhouse study was conducted to determine the effects of plant age, leaf age and leaf position on infection of carrot (Daucus carota var. sativa) by Cercospora carotae. Infection was quantified as the number of lesions cm-2 of leaf surface and the length of incubation period. The relative number of lesions decreased linearly with increasing plant age from 39- to 60-d-old plants, and remained low from 60- to 71-d-old plants. The incubation period increased from 9.0 to 16.6 d, with increasing plant age. Relative number of lesions decreased with increasing leaf age from 1 to 36 d, but the variation among leaves was high. The incubation period increased from 9.0 to 18.3 d with increasing leaf age, but lesions on a few young leaves appeared relatively late. Generally, differences in relative number of lesions for leaves on different positions for 10- and 13-wk-old plants were not significant. Infection on all leaves except the two youngest was representative of infection on whole plant. Effect of leaf position on incubation period was different for the 10- and 13-wk-old plants and for the two trials. Plants younger than 60 d old, in the seven-to eight-leaf stages should be used for experiments on the initial development of Cercospora blight of carrots.


1993 ◽  
Vol 28 (1) ◽  
pp. 126-135 ◽  
Author(s):  
T. X. Liu ◽  
R. D. Oetting ◽  
G. D. Buntin

The effects of three insecticides, bifenthrin, endosulfan and aldicarb, on the within- and between-plant distributions of both greenhouse whitefly (GHWF), Trialeurodes vaporariorum (Westwood), and sweetpotato whitefly (SPWF), Bemisia tabaci (Gennadius), were examined on greenhouse-grown poinsettia using Taylor's Power Law. Insecticide applications affected the spatial distribution of GHWF and SPWF. The populations of immatures of both species surviving an insecticide application on poinsettia were less aggregated within and between plants than untreated populations. Among the three insecticides, the efficacy against the two whiteflies was not significantly different at the end of the seventh week when multiple applications were conducted. Aldicarb caused higher mortality of immature stages than bifenthrin and endosulfan after four weeks following a single application. A single application of bifenthrin and endosulfan affected the distribution of all whitefly stages in the first and second weeks after treatment, whereas aldicarb did not affect the whitefly population until the third week. Insecticidal treatments had little effect on the stratification of whitefly stages within the plant.


Sign in / Sign up

Export Citation Format

Share Document