Distribution of an Invasive Weevil, Pseudocneorhinus bifasciatus Roelofs, in the Southeastern United States

2005 ◽  
Vol 40 (1) ◽  
pp. 25-30 ◽  
Author(s):  
A. G. Wheeler ◽  
David W. Boyd

The twobanded Japanese weevil, Pseudocneorhinus bifasciatus Roelofs, first found in North America near Philadelphia, PA, in 1914, is better known in the northeastern United States than in the Southeast. Based on examination of specimens in 11 museums, fieldwork, and review of the literature, we document the presence of this pest of ornamental plants in Alabama (3 counties), Georgia (12), North Carolina (16), and South Carolina (19). The southeastern distribution is mapped, and locality and date are provided for the first collection in each state: North Carolina, 1955; Georgia, 1956; South Carolina, 1966; and Alabama, 1970.

1998 ◽  
Vol 8 (1) ◽  
pp. 40-44 ◽  
Author(s):  
Ellen M. Bauske ◽  
Geoffrey M. Zehnder ◽  
Edward J. Sikora ◽  
Joseph Kemble

Multidisciplinary integrated pest management (IPM) teams from seven states in the southeastern United States (Alabama, North Florida, Georgia, Kentucky, North Carolina, South Carolina, and Tennessee) met to develop standards for adopting IPM in fresh-market tomato (Lycopersicon esculentum L.) production. Teams were composed of growers, private consultants, extension personnel, and faculty. IPM practices available for use on tomatoes in the southeastern United States were identified and a survey to assess the current level of adoption of IPM practices was developed. The survey also allowed growers to identify insect, disease, and production problems; beneficial technology and research developments; and other information relevant to IPM adoption. In northern Florida, Georgia, Kentucky, North Carolina, and South Carolina, IPM adoption by tomato growers was classified as medium or high on >75% of the fresh-market tomato acreage surveyed. It appears these states may have met the federal mandate for IPM adoption. Tomato producers listed early blight, late blight, bacterial spot, bacterial speck, and bacterial wilt as the main disease problems; tomato fruit worm, thrips, and aphids as the primary insect problems; and poor weather conditions, government regulation, and labor as their primary production problems. Twenty-six percent of the producers throughout the region felt that the development of insect- and disease-resistant varieties would be most helpful to increase production.


1993 ◽  
Vol 125 (5) ◽  
pp. 971-973 ◽  
Author(s):  
C.M. Felland ◽  
L.A. Hull ◽  
D.A.J. Teulon ◽  
E. Alan Cameron

Western flower thrips, Frankliniella occidentalis (Pergande), originally distributed throughout western North America (Bryan and Smith 1956), have since spread to greenhouses in the eastern United States and Canada, and to many other parts of the world (Brodsgaard 1989). Populations have established outdoors in the southeastern United States (Chamberlin et al. 1992) and in several other warm regions of the world (Brodsgaard 1993). but have failed to establish in Ontario (Broadbent and Hunt 1991) and the northern parts of Europe (Brodsgaard 1993). We have not found reports of western flower thrips overwintering outdoors in the northeastern United States.


2020 ◽  
Vol 57 (4) ◽  
pp. 1324-1327
Author(s):  
Phillip Shults ◽  
Alphina Ho ◽  
Estelle M Martin ◽  
Bethany L McGregor ◽  
Edward L Vargo

Abstract Much of the bluetongue (BT) and epizootic hemorrhagic disease (EHD) research in North America focuses on white-tail deer and Culicoides sonorensis (Wirth & Jones) (Diptera: Ceratopogonidae), though several other biting midge species have been suggested as vectors. Culicoides stellifer (Coquillett) has been associated with hosts susceptible to hemorrhagic disease (HD), and more recently, specimens from Florida have tested positive for EHD and BT viral RNA. If C. stellifer is acting as a vector, this could have an impact on the distribution of HD in North America. To determine if gene flow is occurring across the range of C. stellifer within the southeast United States, a mitochondrial haplotype analysis was performed using the COI gene. Our haplotype network showed no population structure in C. stellifer from Florida, Texas, and South Carolina, as the overall genetic divergence between these sites was equal to the genetic divergence within each. We also compared these haplotypes to published sequences of C. stellifer collected in Ontario, Canada. Surprisingly, the genetic diversity of the flies from Ontario was two times greater than what was observed between the southeast U.S. collection sites. This considerable divergence could be evidence of a cryptic species. A better understanding of the connectivity between C. stellifer populations across all of North America will give insight into the distribution of HD. Our results show that gene flow is occurring between sites in the southeastern United States and potentially throughout the eastern distribution of the species.


Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 974-974 ◽  
Author(s):  
S. R. Koenning ◽  
T. C. Creswell ◽  
E. J. Dunphy ◽  
E. J. Sikora ◽  
J. D. Mueller

Target spot of soybean (Glycine max (L.) Merr.) caused by Corynespora cassiicola (Berk. & Curt.), although found in most soybean-growing countries, is considered to be a disease of limited importance (1) and has never been reported to cause soybean yield loss in the southeastern United States (2,3). Soybean plants submitted to the North Carolina Plant Disease and Insect Clinic (NCPDIC) in August 2004 from Beaufort, Robeson, Wilson, and Johnston counties, NC had symptoms consistent with target spot. Symptoms consisted of roughly circular, necrotic leaf lesions from minute to 11 mm in diameter, though typically approximately 4 to 5 mm in diameter, and with a yellow margin. Large lesions occasionally exhibited a zonate pattern often associated with this disease. Microscopic examination of the lesions revealed the presence of spores (conidia) typical of C. cassiicola (1). Conidia were mostly three to five septate with a central hilum at the base and ranged in size from 7 to 22 wide × 39 to 520 μm long. Three commercial soybean fields near Blackville, SC (Barnwell County) were severely affected by this disease and it caused premature defoliation. Nineteen of twenty-seven maturity group VII and VIII genotypes in the 2004 Clemson University soybean variety trial near Blackville, SC had visible symptoms of target spot. Heavy rainfall associated with hurricanes during September 2004 probably enhanced the incidence of this disease, and yield suppression due to target spot was estimated at 20 to 40% in some fields. In 2005, 20 of 161 soybean samples submitted to the NCPDIC or collected in surveys from 16 counties were positive for target spot on the basis of microscopic examination. Target spot also was diagnosed in six counties (Baldwin, DeKalb, Elmore, Fayette, Macon, and Pickens) in Alabama and in four additional counties (Bamberg, Hampton, Orange-burg, and Calhoun) in South Carolina in 2005. Records from the NCPDIC indicate that target spot had not been diagnosed on soybean in North Carolina since 1981. The large increase in incidence of target spot in the southeast may be related to changes in weather patterns, changes in pathogen virulence, and/or the introduction of more susceptible host genotypes. References: (1) J. B. Sinclair. Target spot. Page 27 in: Compendium of Soybean Diseases. G. L. Hartman et al. eds. The American Phytopathological Society, St. Paul, MN, 1999. (2) J. A. Wrather et al. Plant Dis. 79:1076. 1995. (3) J. A. Wrather et al. On-line publication. doi:10.1094/PHP-2003-0325-01-RV. Plant Health Progress, 2003.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 86-92 ◽  
Author(s):  
H. A. Olson ◽  
S. N. Jeffers ◽  
K. L. Ivors ◽  
K. C. Steddom ◽  
J. L. Williams-Woodward ◽  
...  

Phytophthora isolates associated with ornamental plants or recovered from irrigation water in six states in the southeastern United States (Georgia, North Carolina, South Carolina, Tennessee, Texas, and Virginia) were identified and screened for sensitivity to mefenoxam. Isolates from forest and suburban streams in Georgia and Virginia were included for comparison. A new in vitro assay, utilizing 48-well tissue culture plates, was used to screen for mefenoxam sensitivity; this assay allowed high throughput of isolates and used less material than the traditional petri plate assay. In total, 1,483 Phytophthora isolates were evaluated, and 27 species were identified with Phytophthora nicotianae, P. hydropathica, and P. gonapodyides, the most abundant species associated with plants, irrigation water, and streams, respectively. Only 6% of isolates associated with plants and 9% from irrigation water were insensitive to mefenoxam at 100 μg a.i./ml. Approximately 78% of insensitive isolates associated with plants were P. nicotianae, and most of these (67%) came from herbaceous annual plants. Most of the insensitive isolates recovered from irrigation water were P. gonapodyides, P. hydropathica, P. megasperma, and P. pini, and 83% of the insensitive isolates from streams were P. gonapodyides. Overall, this study suggests that mefenoxam should continue to be a valuable tool in the management of Phytophthora diseases affecting ornamental plants in the southeastern United States.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 432-432 ◽  
Author(s):  
I. E. Tzanetakis ◽  
T. L. Guzmán-Baeny ◽  
Z. P. VanEsbroeck ◽  
G. E. Fernandez ◽  
R. R. Martin

Blackberry yellow vein disease (BYVD) has emerged as an important disease of blackberry (Rubus spp.) in the south and southeastern United States (2,3). In an effort to characterize viruses that may be involved in the disease, double-stranded RNA extracted from a symptomatic ‘Apache’ blackberry from South Carolina was used for shotgun cDNA cloning (4). Sequence analysis showed that in addition to Blackberry yellow vein associated virus (BYVaV) (2), a constant component of BYVD, sequences of Impatiens necrotic spot virus (INSV) also were obtained. The 623-nt fragment of INSV (Genbank Accession No. EU287930) shared 98% nucleotide and amino acid sequence identity with GenBank Accession No. NC003616. Confirmation of the results of the initial shotgun cloning was done by reverse transcription-PCR with primers INSVF (5′ GATCTGTCCTGGGATTGTTC 3′) and INSVR (5′ GTCTCCTTCTGGTTCTATAATCAT 3′) that amplify a 460 base fragment of the M RNA of INSV. Amplicons obtained from single-stranded and dsRNA templates were sequenced and found to be identical with EU287930. The identity of INSV by PCR was also supported by positive results with a commercially available INSV-ELISA kit (AC Diagnostics, Fayetteville, AR). Earlier, more than 400 plants from North Carolina, South Carolina, and Virginia with BYVD and other virus-like symptoms were tested for INSV by ELISA and approximately 33% were found to be infected with the virus (1). Thus, INSV appears to be one of the major viruses infecting blackberry in the southeastern United States, and it remains to be seen if INSV acts synergistically with BYVaV and other viruses to contribute to the severity of BYDV. To our knowledge, this is the first report of INSV infecting Rubus spp. References: (1) T. L. Guzmán-Baeny. M.S. thesis. North Carolina State University, Raleigh, 2003. (2) J. Susaimuthu et al. Plant Pathol. 55:607, 2006. (3) J. Susaimuthu et al. Virus Res. 131:145, 2008. (4) I. E. Tzanetakis et al. J. Virol. Methods 124:73, 2005.


1992 ◽  
Vol 2 (1) ◽  
pp. 64-66
Author(s):  
Robert J. Dufault ◽  
K. Dean Batal ◽  
Dennis Decoteau ◽  
J. Thomas Garrett ◽  
Darbie Granberry ◽  
...  

The experiment screened two spring and two fall planting dates in six regions within North Carolina, South Carolina, and Georgia. The objective was to extend the production over the southeastern United States rather than at a single location. Spring harvests lasted from mid-April to early July. Summer-to-winter harvests lasted from mid-August to late January. Collards were not harvested in any of the locations from late January to mid-April or from early July to mid-August. More extensive planting dates may further increase the longevity of production.


Sign in / Sign up

Export Citation Format

Share Document