scholarly journals Polymerization Shrinkage of Five Bulk-Fill Composite Resins in Comparison with a Conventional Composite Resin

Author(s):  
Mahdi Abbasi ◽  
Zohreh Moradi ◽  
Mansoureh Mirzaei ◽  
Mohammad Javad Kharazifard ◽  
Samaneh Rezaei

Objectives: The polymerization shrinkage of methacrylate-based composites is among the most important causes of failure of composite restorations. The manufacturers claim that bulk-fill composites have a lower polymerization shrinkage than conventional composites. This study aimed to assess the polymerization shrinkage of five bulk-fill composites in comparison with a conventional composite. Materials and Methods: In this in-vitro experimental study, composite discs (n=30) were fabricated using everX Posterior (EXP), Filtek Bulk-Fill Posterior (FBP), SonicFill 2 (SF2), Tetric N-Ceram Bulk-Fill (TNB), X-tra fil (XF), and Filtek Z250 conventional composite at the center of a metal ring bonded to a microscope slide and were covered with a coverslip. This assembly was transferred to a linear variable differential transformer (LVDT). Light-curing (1200 mW/cm2) was performed from underneath the slide for 30 seconds. The deflecting disc method and LVDT were used to assess the dimensional changes of the samples (indicative of polymerization shrinkage) at 1, 30, 60, and 1800 seconds following the onset of light irradiation. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey’s test. Results: The groups were significantly different regarding polymerization shrinkage (P<0.002). The polymerization shrinkage of the tested composites following the onset of light irradiation ranged from 0.19 to 3.03. EXP showed a significantly higher polymerization shrinkage than other composites at 30, 60, and 1800 seconds after light irradiation, while XF showed the lowest polymerization shrinkage at the aforementioned time points. Conclusions: The tested bulk-fill composites had a polymerization shrinkage similar to that of the conventional composite.

2016 ◽  
Vol 19 (2) ◽  
pp. 72 ◽  
Author(s):  
Rafael Francisco Lia Mondelli ◽  
Marilia Mattar de Amoêdo Campos Velo ◽  
Rafael Simões Gonçalves ◽  
Bhenya Ottoni Tostes ◽  
Sergio Kiyoshi Ishikiriama ◽  
...  

<p>Objective: Composite polymerization shrinkage<br />stress is an inherent process of chemical and light<br />composite resin activation. Consequently, this fact has<br />been associated to potential clinical problems. The<br />aim of the present in vitro study was to evaluate the<br />volume and C-factor influence on chemical and lightcuring<br />composite resin polymerization shrinkage<br />stress, using a non-rigid method that thereby provides<br />lower stress values, causing a minimal deflection in<br />load cell. Materials and Methods: The contraction<br />forces of the Z-250 and Concise composite resins<br />during polymerization were recorded in an UTM in<br />two experiments. In the first experiment, the Z-250<br />composite was inserted beetwen two rectangular<br />steel plates (6.0 x 2.0 mm), varyng the resin volumes<br />and C-factors, in a single increment, polymerized for<br />20 s and the forces generated were recorded for 120<br />s. In the second experiment, a pair of rectangular steel<br />plates (3x2mm) and two square steel plates (2x2mm),<br />with varied heights (2; 3 mm, respectively), were<br />used to determine the C-factor (0.6; 0.3) influence.<br />Results: The polymerized Z-250 results showed that<br />the volume variations, independent of the C-factor,<br />had a direct influence on the shrinkage stress,<br />different from the Concise, which was influenced by<br />the C-factor. Conclusion: The present study showed<br />that a higher volume of composite resins determines<br />an increase in the shrinkage stress of light-curing<br />composites.</p><p><strong>Keywords</strong></p><p>C-factor. Composite resin. Polymerization. Shrinkage<br />stress.</p>


2014 ◽  
Vol 39 (3) ◽  
pp. 325-331 ◽  
Author(s):  
E Karaman ◽  
G Ozgunaltay

SUMMARY Aim To determine the volumetric polymerization shrinkage of four different types of composite resin and to evaluate microleakage of these materials in class II (MOD) cavities with and without a resin-modified glass ionomer cement (RMGIC) liner, in vitro. Materials and Methods One hundred twenty-eight extracted human upper premolar teeth were used. After the teeth were divided into eight groups (n=16), standardized MOD cavities were prepared. Then the teeth were restored with different resin composites (Filtek Supreme XT, Filtek P 60, Filtek Silorane, Filtek Z 250) with and without a RMGIC liner (Vitrebond). The restorations were finished and polished after 24 hours. Following thermocycling, the teeth were immersed in 0.5% basic fuchsin for 24 hours, then midsagitally sectioned in a mesiodistal plane and examined for microleakage using a stereomicroscope. The volumetric polymerization shrinkage of materials was measured using a video imaging device (Acuvol, Bisco, Inc). Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U-tests. Results All teeth showed microleakage, but placement of RMGIC liner reduced microleakage. No statistically significant differences were found in microleakage between the teeth restored without RMGIC liner (p&gt;0.05). Filtek Silorane showed significantly less volumetric polymerization shrinkage than the methacrylate-based composite resins (p&lt;0.05). Conclusion The use of RMGIC liner with both silorane- and methacrylate-based composite resin restorations resulted in reduced microleakage. The volumetric polymerization shrinkage was least with the silorane-based composite.


2013 ◽  
Vol 1 (4) ◽  
pp. 281
Author(s):  
Bárbara Malta Neves Oliveira ◽  
Renata Pereira ◽  
Maria Do Carmo Aguiar Jordão Mainardi ◽  
Gláucia Maria Bovi Ambrosano ◽  
Débora Alves Nunes Lima ◽  
...  

This in vitro work had as aim evaluate the effect of photoactivation mode and the distance of light-curing unit (LCU) in microhardness Knoop (KHN) and the diametrical tensile strength (DTS) of methacrylate and silorane-based resins. Filtek Z250 (methacrylate-based resin) and Filtek P90 (silorane-based resin), both from 3M Espe, were selected for this work. The photoactivation were performed by one of the following modes: Valo (Ultradent) at 1000 mW/cm2 X 18 s (S); 1400 mW/cm2 X 12 s (HP); 3200 mW/cm2 X 6 s (PE); and XL 3000 (3M Espe) at 450 mW/cm2 X 40 s (XL). Resin composite were inserted in one increment into a bipartide Teflon matrix (5mm X 2mm) and photoactivated at 0mm, 3 or 6mm from the increment surface, according to the experimental groups. After the confection, the specimens (n=5) were submitted to KHN on the top (T) and on the bottom (B), and to DTS. Data were analyzed through ANOVA/Tukey tests (α=5%). It was observed that Filtek Z250 presented values of KHN equal or higher than Filtek P90. The surface T presented higher values of KHN than B. For both composite resins, the values of KHN on the surface B were lower, as higher the distance of LCU. In relation to DTS, the higher values were observed in Filtek Z250. Silorane base composite resin presented lower mechanical properties when compared to the methacrylate base resin. The distance of LCU is able to influence the microhardness of bottom surface. 


2007 ◽  
Vol 18 (3) ◽  
pp. 231-234 ◽  
Author(s):  
Álvaro Della Bona ◽  
Vinícius Rosa ◽  
Dileta Cecchetti

This study tested the following hypotheses: 1. increasing light irradiation time (IT) produces greater values of superficial hardness on different depths (0 and 3 mm); and 2. a dark shade composite (A3) needs longer IT than a light shade composite (A1) to produce similar hardness. Disk-shaped specimens (n=24 per shade) were fabricated using a 3-mm-thick increment of composite resin (Z100). Specimens were randomly assigned to 3 groups (n=8) according to the IT (400 mW/cm2) at the upper (U) surface: A1-10 and A3-10: 10 s; A1-20 and A3-20: 20 s; A1-40 and A3-40: 40 s. Specimens were stored in black lightproof containers at 37ºC for 24 h before indentation in a hardness tester. Three Vickers indentations were performed on the U and lower (L) surfaces of each specimen. The indent diagonals were measured and the hardness value calculated. The results were analyzed statistically by ANOVA and Tukey's test (alpha=0.05). Statistically significant differences were found between U and L surfaces of each composite shade-IT combination (p=0.0001) and among the ITs of same shade-surface combination (p=0.0001), except between groups A1-20U and A1-40U, confirming the study hypothesis 1 and partially rejecting the hypothesis 2.


2021 ◽  
Vol 6 (1) ◽  
pp. 85
Author(s):  
Rahmi Khairani Aulia

ABSTRACT:Composite resins are currently the most popular restorative material in dentistry. This is due to good aesthetics and maximum conservation ability. Behind these advantages, there are disbenefits of composite resin materials, such as polymerization shrinkage, which can lead to restoration failure. Various attempts have been investigated to reduce the shrinkage incidence of composite resins, one of which is the technique of placing the restorative material into the cavity. The restoration filling technique is recognized as a significant factor in shrinkage stress. By using a special filling technique, the polymerization shrinkage damage stress can be reduced. There are several techniques in performing composite resin fillings, including bulk and incremental techniques. These techniques have their respective advantages and disadvantages. The aim of this literature review was to compare the physical properties of composite resin restorations with bulk filling and incremental techniques. Physical properties that being studied include polymerization shrinkage, stress shrinkage, degree of conversion, bonding strength, water resorption, color stability, and temperature increase. Comparing the two techniques, composite resin with incremental filling technique has superior physical properties compared to bulk technique. From the comparison of the two techniques, the composite resin with incremental filling technique has superior physical properties compared to the bulk technique, especially in higher conversion which causes lower shrinkage stress. This situation makes the incremental technique provide better bond strength, water resorption, color stability, and lower temperature rise.Keywords: Bulk, Composite Resin, Incremental,  Physical Properties, Restoration, Restoration Technique


2006 ◽  
Vol 17 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Janisse Martinelli ◽  
Fernanda de Carvalho Panzeri Pires-de-Souza ◽  
Luciana Assirati Casemiro ◽  
Camila Tirapelli ◽  
Heitor Panzer

This study compared the abrasion resistance of direct composite resins cured by light-emitting diodes (LED) and halogen light-curing units. Twenty specimens (12 mm in diameter; 1.0 mm thick) of each composite resin [TPH (Dentsply); Definite (Degussa); Charisma (Heraus Kulzer)] were prepared using a polytetrafluoroethylene matrix. Ten specimens per material were cured with the LED source and 10 with the halogen lamp for 40 s. The resin discs were polished, submitted to initial surface roughness reading (Ra initial - mum) in a roughness tester and stored in water at 37°C for 15 days. The specimens were weighed (M1) and submitted to simulated toothbrushing using slurry of water and dentifrice with high abrasiveness. After 100 minutes in the toothbrushing simulator, the specimens were cleaned, submitted to a new surface roughness reading (Ra final - mum) and reweighed (M2). Mass loss was determined as the difference between M1 and M2. Data were recorded and analyzed statistically by one-way ANOVA and Tukey Test at 5% significance level. The composite resin with greater size of inorganic fillers (TPH) showed the lowest mass loss and surface roughness means, indicating a higher resistance to toothbrush abrasion (p<0.05). Definite cured with LED presented the least resistance to toothbrush abrasion, showing the highest means of surface roughness and mass loss (p<0.05). The LED source did not show the same effectiveness as the halogen lamp for polymerizing this specific composite resin. When the composite resins were cured a halogen LCU, no statistically significant difference was observed among the materials (p>0.05). It may be concluded that the type of light-curing unit and the resin composition seemed to interfere with the materials' resistance to abrasion.


2017 ◽  
Vol 19 (4) ◽  
pp. 1-6
Author(s):  
Meghna Singh ◽  
Neerja Singh ◽  
Ashish Saini ◽  
Pranav Singh ◽  
Tanu Tewari ◽  
...  

2004 ◽  
Vol 12 (4) ◽  
pp. 307-311 ◽  
Author(s):  
Silvia Kenshima ◽  
Rosa Helena Miranda Grande ◽  
Julio da Motta Singer ◽  
Rafael Yagüe Ballester

The objective of this study was to evaluate in vitro the effect on leakage of two incremental filling techniques and two composite resins with different elastic modulus and similar polymerization shrinkage. Eighty Class V cavities (4x4x2mm) were prepared in bovine incisors and were randomly restored with Z-250 (Z) or Durafill VS (D) + Single Bond in axial (a) or oblique (o) increments. The restorations were divided into two groups: Not Aged - N (4-hour-storage in water at 37ºC) and Aged - A (1-week storage in water at 37ºC + 1000 x - 5º-55ºC / 1-min dwell time). The specimens were covered with 2 coats of nail varnish so that only the restoration margins were exposed to silver nitrate 50% (2h) and developed under fluorescent light (8h). After they were sectioned twice in buccal-lingual direction, the four exposed surfaces were digitized (Vidcap) and the silver nitrate penetration was measured (ImageLab) at the incisal and gingival walls. Data were analyzed by a 3-way ANOVA (Resin, Filling Technique and Aging) separately for incisal and gingival walls (alpha=0.05). Resin and Aging were statistically significant either for the incisal and the gingival walls. The microfill composite resin infiltrated more than the hybrid composite. The thermal cycling caused an overall increase in silver nitrate penetration. The filling technique affected leakage depending on the composite resin and aging regimen.


2013 ◽  
Vol 14 (1) ◽  
pp. 21-25 ◽  
Author(s):  
T Praveen Kumar Reddy ◽  
Kolasani Srinivasa Rao ◽  
Garlapati Yugandhar ◽  
B Sunil Kumar ◽  
SN Chandrasekhar Reddy ◽  
...  

ABSTRACT The acid pretreatment and use of composite resins as the bonding medium has disadvantages like scratching and loss of surface enamel, decalcification, etc. To overcome disadvantages of composite resins, glass ionomers and its modifications are being used for bonding. The study was conducted to evaluate the efficiency of resin reinforced glass ionomer as a direct bonding system with conventional glass ionomer cement and composite resin. The study showed that shear bond strength of composite resin has the higher value than both resin reinforced glass ionomer and conventional glass ionomer cement in both 1 and 24 hours duration and it increased from 1 to 24 hours in all groups. The shear bond strength of resin reinforced glass ionomer cement was higher than the conventional glass ionomer cement in both 1 and 24 hours duration. Conditioning with polyacrylic acid improved the bond strength of resin reinforced glass ionomer cement significantly but not statistically significant in the case of conventional glass ionomer cement. How to cite this article Rao KS, Reddy TPK, Yugandhar G, Kumar BS, Reddy SNC, Babu DA. Comparison of Shear Bond Strength of Resin Reinforced Chemical Cure Glass Ionomer, Conventional Chemical Cure Glass Ionomer and Chemical Cure Composite Resin in Direct Bonding Systems: An in vitro Study. J Contemp Dent Pract 2013;14(1):21-25.


Sign in / Sign up

Export Citation Format

Share Document