scholarly journals Investigating Quick Speech-in-Noise Comprehension in Adult Bimodal Users

Author(s):  
Javad Fakhri ◽  
Nematollah Rouhbakhsh ◽  
Reza Hoseinabadi ◽  
Farzaneh Fatahi ◽  
Mahsa Sepehernejad ◽  
...  

Introduction: The use of cochlear implants, due to technological limitations, causes problems in speech comprehension in the presence of noise. This study aimed to evaluate the speech-in- noise (SIN) comprehension with emphasis on high-frequency components between users of different bimodal adult. Materials and Methods: This study was conducted on 33 adult participants with a mean age of 36 years using bimodal (cochlear implant in one ear and hearing aid in another ear: CI/HA) style of different companies. Quick SIN with emphasis on high-frequency components was performed on the participants using an audiometer, an amplifier, and one speaker. Results: Comparing the average percentage of correct answers from the word recognition test in the presence of noise in bimodal users showed that the Cochlear brand provides a better signal-to-noise (SNR) compare to other brands. Our result shows that bimodal users of Advance bionic and Med-El groups have better performance in speech recognition than other brands. Conclusion: Bimodal users of Advance bionic and Med-El have better SNR loss than other brands. Besides, further studies on different ages can be helpful to make the right decision in this regard.

2012 ◽  
Vol 55 (3) ◽  
pp. 865-878 ◽  
Author(s):  
Rosemary Elizabeth Susan Lovett ◽  
Pádraig Thomas Kitterick ◽  
Shan Huang ◽  
Arthur Quentin Summerfield

Purpose To establish the age at which children can complete tests of spatial listening and to measure the normative relationship between age and performance. Method Fifty-six normal-hearing children, ages 1.5–7.9 years, attempted tests of the ability to discriminate a sound source on the left from one on the right, to localize a source, to track moving sources, and to perceive speech in noise. Results Tests of left–right discrimination, movement tracking, and speech perception were completed by ≥75% of children older than 3 years. Children showed adult levels of performance from age 1.5 years (movement tracking), 3 years (left–right discrimination), and 6 years (localization and speech in noise). Spatial release from masking—calculated as the difference in speech reception thresholds between conditions with spatially coincident and spatially separate speech and noise—remained constant at 5 dB from age 3 years. Data from a separate study demonstrate the age at which children with cochlear implants can complete the same tests. Assessments of left–right discrimination, movement tracking, and speech perception were completed by ≥75% of children who are older than 5 years and who wear cochlear implants. Conclusion These data can guide the selection of tests for future studies and inform the interpretation of results from clinical populations.


2013 ◽  
Vol 22 (1) ◽  
pp. 135-146 ◽  
Author(s):  
Su-Hyun Jin ◽  
Yingjiu Nie ◽  
Peggy Nelson

Purpose To examine the effects of temporal and spectral interference of masking noise on sentence recognition for listeners with cochlear implants (CI) and normal-hearing persons listening to vocoded signals that simulate signals processed through a CI (NH-Sim). Method NH-Sim and CI listeners participated in the experiments using speech and noise that were processed by bandpass filters. Depending on the experimental condition, the spectra of the maskers relative to that of speech were set to be completely embedded with, partially overlapping, or completely separate from, the speech. The maskers were either steady or amplitude modulated and were presented at +10 dB signal-to-noise ratio. Results NH-Sim listeners experienced progressively more masking as the masker became more spectrally overlapping with speech, whereas CI listeners experienced masking even when the masker was spectrally remote from the speech signal. Both the NH-Sim and CI listeners experienced significant modulation interference when noise was modulated at a syllabic rate (4 Hz), suggesting that listeners may experience both modulation interference and masking release. Thus, modulated noise has mixed and counteracting effects on speech perception. Conclusion When the NH-Sim and CI listeners with poor spectral resolution were tested using syllabic-like rates of modulated noise, they tended to integrate or confuse the noise with the speech, causing an increase in speech errors. Optional training programs might be useful for CI listeners who show more difficulty understanding speech in noise.


1987 ◽  
Vol 96 (1_suppl) ◽  
pp. 21-22 ◽  
Author(s):  
G. Kauffmann ◽  
A. Achilles

Any presence of technical material (eg, metals) in biologic tissue alters the spread of potentials in it. We decided to investigate the spread of potentials around electrode tips using a computer model based on material data extracted from the literature. The following results were obtained. 1) The permittivity of the tissue caused a low pass effect. The potential lost its high frequency components as the distance to the electrode tip increased. An increase of the inner resistance of the source enhanced this effect. 2) The assumption of not constant but falling permittivity and rising conductivity with frequency still enlarged the effect and altered the resulting waveform because of the response of the affected electrical properties of the tissue on the spread of potentials. The latter effect was seen in the near field; in the far field (> 20 μm), it vanished progressively.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


2020 ◽  
Vol 63 (11) ◽  
pp. 3855-3864
Author(s):  
Wanting Huang ◽  
Lena L. N. Wong ◽  
Fei Chen ◽  
Haihong Liu ◽  
Wei Liang

Purpose Fundamental frequency (F0) is the primary acoustic cue for lexical tone perception in tonal languages but is processed in a limited way in cochlear implant (CI) systems. The aim of this study was to evaluate the importance of F0 contours in sentence recognition in Mandarin-speaking children with CIs and find out whether it is similar to/different from that in age-matched normal-hearing (NH) peers. Method Age-appropriate sentences, with F0 contours manipulated to be either natural or flattened, were randomly presented to preschool children with CIs and their age-matched peers with NH under three test conditions: in quiet, in white noise, and with competing sentences at 0 dB signal-to-noise ratio. Results The neutralization of F0 contours resulted in a significant reduction in sentence recognition. While this was seen only in noise conditions among NH children, it was observed throughout all test conditions among children with CIs. Moreover, the F0 contour-induced accuracy reduction ratios (i.e., the reduction in sentence recognition resulting from the neutralization of F0 contours compared to the normal F0 condition) were significantly greater in children with CIs than in NH children in all test conditions. Conclusions F0 contours play a major role in sentence recognition in both quiet and noise among pediatric implantees, and the contribution of the F0 contour is even more salient than that in age-matched NH children. These results also suggest that there may be differences between children with CIs and NH children in how F0 contours are processed.


2008 ◽  
Vol 18 (1) ◽  
pp. 19-24
Author(s):  
Erin C. Schafer

Children who use cochlear implants experience significant difficulty hearing speech in the presence of background noise, such as in the classroom. To address these difficulties, audiologists often recommend frequency-modulated (FM) systems for children with cochlear implants. The purpose of this article is to examine current empirical research in the area of FM systems and cochlear implants. Discussion topics will include selecting the optimal type of FM receiver, benefits of binaural FM-system input, importance of DAI receiver-gain settings, and effects of speech-processor programming on speech recognition. FM systems significantly improve the signal-to-noise ratio at the child's ear through the use of three types of FM receivers: mounted speakers, desktop speakers, or direct-audio input (DAI). This discussion will aid audiologists in making evidence-based recommendations for children using cochlear implants and FM systems.


2019 ◽  
Vol 14 (7) ◽  
pp. 658-666
Author(s):  
Kai-jian Xia ◽  
Jian-qiang Wang ◽  
Jian Cai

Background: Lung cancer is one of the common malignant tumors. The successful diagnosis of lung cancer depends on the accuracy of the image obtained from medical imaging modalities. Objective: The fusion of CT and PET is combining the complimentary and redundant information both images and can increase the ease of perception. Since the existing fusion method sare not perfect enough, and the fusion effect remains to be improved, the paper proposes a novel method called adaptive PET/CT fusion for lung cancer in Piella framework. Methods: This algorithm firstly adopted the DTCWT to decompose the PET and CT images into different components, respectively. In accordance with the characteristics of low-frequency and high-frequency components and the features of PET and CT image, 5 membership functions are used as a combination method so as to determine the fusion weight for low-frequency components. In order to fuse different high-frequency components, we select the energy difference of decomposition coefficients as the match measure, and the local energy as the activity measure; in addition, the decision factor is also determined for the high-frequency components. Results: The proposed method is compared with some of the pixel-level spatial domain image fusion algorithms. The experimental results show that our proposed algorithm is feasible and effective. Conclusion: Our proposed algorithm can better retain and protrude the lesions edge information and the texture information of lesions in the image fusion.


Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


Author(s):  
Monika Lewandowska ◽  
Rafał Milner ◽  
Małgorzata Ganc ◽  
Elżbieta Włodarczyk ◽  
Joanna Dołżycka ◽  
...  

AbstractThere are discrepancies in the literature regarding the course of central auditory processes (CAP) maturation in typically developing children and adolescents. The purpose of the study was to provide an overview of age – related improvement in CAP in Polish primary and secondary school students aged 7–16 years. 180 children/adolescents, subdivided into 9 age categories, and 20 adults (aged 18–24 years) performed the Dichotic Digit Test (DDT), Duration Pattern Test (DPT), Frequency Pattern Test (FPT), Gap Detection Test (GDT) and adaptive Speech-in-Noise (aSpN). The 12-year-olds was retested after w week. We found the age effects only for the DDT, DPT and FPT. In the right ear DDT the 7-year-olds performed more poorly than all groups ≥12. In the left ear DDT both 7- and 8-year-olds achieved less correct responses compared with the 13-, 14-, 15-year-olds and with the adults. The right ear advantage was greater in the 7-year-olds than in the 15-year-olds and adult group. At the age of 7 there was lower DPT and FPT scores than in all participants ≥13 whereas the 8-year-olds obtained less correct responses in the FPT than all age categories ≥12. Almost all groups (except for the 7-year-olds) performed better in the DPT than FPT. The test-retest reliability for all tests was satisfactory. The study demonstrated that different CAP have their own patterns of improvement with age and some of them are specific for the Polish population. The psychoacoustic battery may be useful in screening for CAP disorders in Poland.


Sign in / Sign up

Export Citation Format

Share Document