Charge Carriers Motion in P3HT:Capped ZnO Nanoparticles Blend Films; Impact of Capping Agents

2016 ◽  
Vol 1 ◽  
Author(s):  
Ayi Bahtiar

<p class="TTPAbstract">Blend of conjugated polymer poly(3-hexylthiophene) or P3HT and Zinc Oxide nanoparticles (ZnO-NP) has been intensively used as active material for high performance hybrid solar cells. However, agglomeration of ZnO-NP hinders efficient charge carrier<span lang="IN">s</span> transfer both from P3HT to ZnO-NP and <span lang="IN">their </span>transport within ZnO-NP which cause to low performance of solar cells. Capping of ZnO-NP is currently applied to avoid this agglomeration effect. In this study, we used three different capping agents to cap ZnO-NP, namely small semiconducting molecules squaraine, 2-naphthalene and insulating polymer polyvinylpyrrolidone. We <span lang="IN">conducted</span> temperature dependence of photoinduced infrared absorption spectroscopy to study charge carriers motion in the P3HT:capped ZnO nanoparticles blend films. The measurement was carried out with light irradiation of 532 nm and temperature ranging from 78 to 300 K.  The spectra were analyzed by a bimolecular carrier recombination method with Arrhenius activation energy. Two parallel charge carrier recombination processes are observed, namely polarons recombination along polymer chain (intra-chain) and inter-chain polarons recombination in the P3HT-chains. At low temperatures, polarons recombine along polymer chains (intra-chain) with activation energy between 19-23 eV for all samples. However, the inter-chain polaron motion is influenced by capping agents as shown by a variation in its activation energy ranging from 28 to 58 eV.</p>

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Ayi Bahtiar

<p class="TTPAbstract">Blend of conjugated polymer poly(3-hexylthiophene) or P3HT and Zinc Oxide nanoparticles (ZnO-NP) has been intensively used as active material for high performance hybrid solar cells. However, agglomeration of ZnO-NP hinders efficient charge carrier<span lang="IN">s</span> transfer both from P3HT to ZnO-NP and <span lang="IN">their </span>transport within ZnO-NP which cause to low performance of solar cells. Capping of ZnO-NP is currently applied to avoid this agglomeration effect. In this study, we used three different capping agents to cap ZnO-NP, namely small semiconducting molecules squaraine, 2-naphthalene and insulating polymer polyvinylpyrrolidone. We <span lang="IN">conducted</span> temperature dependence of photoinduced infrared absorption spectroscopy to study charge carriers motion in the P3HT:capped ZnO nanoparticles blend films. The measurement was carried out with light irradiation of 532 nm and temperature ranging from 78 to 300 K.  The spectra were analyzed by a bimolecular carrier recombination method with Arrhenius activation energy. Two parallel charge carrier recombination processes are observed, namely polarons recombination along polymer chain (intra-chain) and inter-chain polarons recombination in the P3HT-chains. At low temperatures, polarons recombine along polymer chains (intra-chain) with activation energy between 19-23 eV for all samples. However, the inter-chain polaron motion is influenced by capping agents as shown by a variation in its activation energy ranging from 28 to 58 eV.</p>


Author(s):  
Jing Ren ◽  
Shurong Wang ◽  
Jianxing Xia ◽  
Chengbo Li ◽  
Lisha Xie ◽  
...  

Defects, inevitably produced in the solution-processed halide perovskite films, can act as charge carrier recombination centers to induce severe energy loss in perovskite solar cells (PSCs). Suppressing these trap states...


2017 ◽  
Vol 10 (4) ◽  
pp. 885-892 ◽  
Author(s):  
Nicola Gasparini ◽  
Luca Lucera ◽  
Michael Salvador ◽  
Mario Prosa ◽  
George D. Spyropoulos ◽  
...  

We present a novel ternary organic solar cell with an uncommonly thick active layer (∼300 nm), featuring thickness invariant charge carrier recombination and delivering 11% power conversion efficiency (PCE).


2014 ◽  
Vol 67 (5) ◽  
pp. 819
Author(s):  
Syed Mujtaba Shah ◽  
Zafar Iqbal ◽  
Muzaffar Iqbal ◽  
Naila Shahzad ◽  
Amina Hana ◽  
...  

Porphyrin dyes have an inherent tendency to aggregate. This leads to a self-quenching phenomenon that hinders electron transfer to the conduction band of semiconductors in dye-sensitized solar cells. Self-quenching adversely affects the efficiency of solar cells. Here, we report the interaction of porphyrin with pristine and acid-functionalized fullerene molecules on the surface of ZnO nanoparticles under chemisorbed conditions. Chemisorption of porphyrin only on ZnO nanoparticles instigates aggregation of the porphyrin molecules. These aggregates can be effectively broken by chemisorbing fullerene molecules on the surface of the ZnO nanoparticles. This is due to self-assembly formation processes because of porphyrin–fullerene interactions. The nanohybrid material, consisting of ZnO nanorods, acid-functionalized porphyrin, and fullerene derivatives, was characterized by UV–visible spectroscopy, fourier transform infrared spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. The material generates better performing dye-sensitized solar cells when compared with those fabricated from porphyrin-based photo-active material.


2020 ◽  
Vol 69 (4) ◽  
pp. 046101
Author(s):  
Qing-Zhong Zhou ◽  
Feng Guo ◽  
Ming-Rui Zhang ◽  
Qing-Liang You ◽  
Biao Xiao ◽  
...  

Nanoscale ◽  
2018 ◽  
Vol 10 (18) ◽  
pp. 8483-8495 ◽  
Author(s):  
Shengli Niu ◽  
Zhiyong Liu ◽  
Ning Wang

A dihydronaphthyl-based C60 bisadduct (NCBA) acceptor was introduced as a third component material to typical binary polymer solar cells (PSCs).


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1348 ◽  
Author(s):  
Yasi Jiang ◽  
Yiyang Pan ◽  
Wanhua Wu ◽  
Kaiying Luo ◽  
Zhitao Rong ◽  
...  

Interface engineering has led to significant progress in solution-processed CdTe nanocrystal (NC) solar cells in recent years. High performance solar cells can be fabricated by introducing a hole transfer layer (HTL) between CdTe and a back contact electrode to reduce carrier recombination by forming interfacial dipole effect at the interface. Here, we report the usage of a commercial product 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (Spiro) as a hole transfer layer to facilitate the hole collecting for CdTe nanocrystal solar cells. It is found that heat treatment on the hole transfer layer has significant influence on the NC solar cells performance. The Jsc, Voc, and power conversion efficiency (PCE) of NC solar cells are simultaneously increased due to the decreased contact resistance and enhanced built-in electric field. We demonstrate solar cells that achieve a high PCE of 8.34% for solution-processed CdTe NC solar cells with an inverted structure by further optimizing the HTL annealing temperature, which is among the highest value in CdTe NC solar cells with the inverted structure.


2015 ◽  
Vol 17 (15) ◽  
pp. 9835-9840 ◽  
Author(s):  
Jian Wang ◽  
Fujun Zhang ◽  
Miao Zhang ◽  
Wenbin Wang ◽  
Qiaoshi An ◽  
...  

Using a hot solution may prove to be an effective method to improve the charge carrier transport for high performance PSCs.


2017 ◽  
Vol 19 (2) ◽  
pp. 1425-1430 ◽  
Author(s):  
Karl C. Gödel ◽  
Bart Roose ◽  
Aditya Sadhanala ◽  
Yana Vaynzof ◽  
Sandeep K. Pathak ◽  
...  

A controlled heat treatment of the absorber layer in air leads to improved Sb2S3 sensitized solar cells. A reduction in charge carrier recombination is the reason for the enhancement.


Sign in / Sign up

Export Citation Format

Share Document