Thermal-Hydraulics Operation Parameters Modeling and Analysis of KLT-40S Reactor at Steady-State and Transient Condition using RELAP5-3D

Author(s):  
Abednego Kristanto ◽  
Alexander Agung ◽  
Kutut Suryopratomo
Author(s):  
Yong Zheng ◽  
Min-jun Peng ◽  
Geng-lei Xia ◽  
Ren Li

The reactor core is a complex system involving the reactor physics, thermal hydraulics and many other aspects. That means the distribution of the core power largely determines the profile of the thermal parameters, meanwhile the local thermal-hydraulics condition will in turn affect the neutronics calculation by moderator temperature effect and Doppler effects. Issues coupling the thermal-hydraulics with neutronics of nuclear plants still challenge the design, safety and the operation of LWR few years ago. Fortunately, the recent availability of powerful computer and computational techniques has enlarged the capabilities of making more realistic simulations of complex phenomena in NPPs. The current study deals with the development of an integrated thermal-hydraulics/neutronics model for Qinshan phase II NPP project reactor for the analysis of specific plant transients in which the neutronic response of the core is important, application of RELAP5-HD making use of the Helios code to derive the macroscopic cross-sections. Based on the coupled model, the steady state calculation and the transient simulation, involving the abnormal operation mode with asymmetrical coolant flux and temperature on the inlet of reactor, have been performed. The results show that the values obtained from coupled code RELAP5-HD calculation are in good agreement with the available experimental data, and the calculated accident parameters curves can predict all major trends of the transient. Steady state and transient condition calculation results are in accordance with the theoretical analysis from the aspect of coupled thermal-hydraulics/neutronics, this demonstrated a successful best estimate coupled RELAP5-HD model of Qinshan phase II NPP reactor has been developed, and the established model will provide a good foundation for the further analysis of the primary loop. It also can be concluded that the more accurate CFD method coupling three dimensional neutron kinetics code based on neutron diffusion method are necessary for steady-state calculation and analysis of transient/accident conditions when asymmetrical processes take place in the core. It is worth mentioning that RELAP5-HD code has already programmed the human-machine interface and the interface for coupling with other code, hence RELAP5-HD code has a broad application prospect in PWRs safety analysis.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Nian-kun Ji ◽  
Shu-ying Li ◽  
Zhi-tao Wang ◽  
Ning-bo Zhao

The intercooled gas turbine obtained by adopting an indirect heat exchanger into an existing gas turbine is one of the candidates for developing high-power marine power units. To simplify such a strong coupled nonlinear system reasonably, the feasibility and availability of qualifying equivalent effectiveness as the only parameter to evaluate the intercooler behavior are investigated. Regarding equivalent effectiveness as an additional degree of freedom, the steady state model of a marine intercooled gas turbine is developed and its off-design performance is analyzed. With comprehensive considerations given to various phase missions of ships, operational flexibility, mechanical constraints, and thermal constraints, the operating curve of the intercooled gas turbine is optimized based on graphical method in three-dimensional performance space. The resulting operating curve revealed that the control strategy at the steady state conditions for the intercooled gas turbine should be variable cycle control. The necessity of integration optimization design for gas turbine and intercooler is indicated and the modeling and analysis method developed in this paper should be beneficial to it.


2015 ◽  
Vol 10 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Xiao Yang ◽  
Dun Lu ◽  
Sanli Liu ◽  
Jun Zhang ◽  
Wanhua Zhao

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
George G. Adams ◽  
Palaniappan Nagappan ◽  
Nicol E. McGruer

A simple method to determine the frictional interaction between a carbon nanotube (CNT) and a substrate is analyzed for feasibility. In this technique an atomic force microscope (AFM) tip is used to drag a CNT along a substrate. Then the deformed shape of the CNT can be viewed either with the AFM or in a scanning electron microscope. An analysis of the steady-state deformed shape allows the determination of the frictional interactions, which occurred during dragging. It is important to quantify these interactions in a variety of potential applications of nanotechnology. In one such example, a CNT based nanoswitch consists of a CNT bridging over a trench. Actuation of the CNT causes it to stretch and can lead to partial slip at the interface. This slip causes hysteresis, which has been observed in the mechanical actuation of a CNT bridge. In this paper continuum level modeling of the frictional interaction is used to determine the relationship between the steady-state deformed shape of the CNT and the frictional interaction, which occurred between the CNT and substrate during dragging. The model and analysis indicate that this method should be feasible for CNTs with aspect ratios approximately in the 100–250 range.


1986 ◽  
Vol 10 (3P2B) ◽  
pp. 1628-1633 ◽  
Author(s):  
Steven P. Grotz ◽  
Nasr M. Ghoniem

2013 ◽  
Vol 694-697 ◽  
pp. 176-180
Author(s):  
Ying Wan ◽  
Li Mai ◽  
Zhi Gen Nie

Considering the instability of the direction dynamics of tank vehicle system under braking maneuver, the longitudinal equivalent model of liquid was formulated with consideration of both the steady-state and the transient state dynamics of the liquid. The Matlab/simulink program of the liquid was built and was combined with the vehicle model in Trucksim software to simulate and analyze the motion of the liquid cargo centroid and its dynamical effects on the vehicle under braking maneuver. It is observed that the liquid cargo slosh motion in tank vehicles has significant influences on braking performance, pitch motion and perpendicular motion of the vehicle. The results of this paper have significant help for studies on dynamics of vehicle tankers under braking maneuver and ensurement of braking stability and security.


Sign in / Sign up

Export Citation Format

Share Document