LOW-CYCLE FATIGUE AT HIGH TEMPERATURES OF HEAT-RESISTANT NICKEL-BASED ALLOY MANUFACTURED BY SELECTIVE LASER MELTING

Author(s):  
M.A. Gorbovets ◽  
◽  
I.A. Hodinev ◽  
P.V. Ryzhkov ◽  
◽  
...  
2021 ◽  
Vol 877 ◽  
pp. 55-60
Author(s):  
Lorenzo Maccioni ◽  
Eleonora Rampazzo ◽  
Filippo Nalli ◽  
Yuri Borgianni ◽  
Franco Concli

In this paper, the static and low-cycle-fatigue (LCF) behavior of wrought samples of 17-4 PH stainless steel (SS) manufactured via Selective Laser Melting (SLM) are presented. On the one hand, several scholars have studied SLM materials and literature reports a huge amount of data as for the high-cycle-fatigue (HCF) behavior. On the other hand, few are the data available on the LCF behavior of those materials. The aim of the present research is to provide reliable data for an as-build 17-4 PH steel manufactured via SLM techniques. Only with quantitative data, indeed, it is possible to exploit all the advantages that this technology can offer. In this regard, both quasi-static (QS) and low-cycle-fatigue tests were performed on Additive Manufacturing (AM) cylindrical samples. Through QS tests, the constitutive low has been defined. Strain-controlled fatigue tests on an electromechanical machine were performed on 12 samples designed according to the ASTM standard. Tests were continued also after the stabilization was reached (needed for the cyclic curve described with the Ramberg-Osgood equation) to obtain also the fatigue (ε-N) curve. Results show that the material has a softening behavior. The Basquin-Coffin-Manson (BCM) parameters were tuned on the basis of the ε-N combinations after rupture.


2018 ◽  
Vol 165 ◽  
pp. 02007 ◽  
Author(s):  
Zhongjiao Zhou ◽  
Xu Hua ◽  
Changpeng Li ◽  
Guofeng Chen

In recent decades, additive manufacturing (AM) technology has shown its great advantages to produce end-use products with complex design and high-added value. However, the AM-specific characters, such as inherent material anomalies (porosity, lack of fusion defects, or inclusions), anisotropy, location-specific properties and residual stresses, prevent AM from widely adoption in safety-critical parts. Therefore, the damage tolerance assessment of AM parts is desperately necessary. In this study, the impact of residual stress and the induced texture (columnar/equiax grain structure) after different heat treatment on the low cycle fatigue (LCF) behavior of Inconel 718 fabricated through selective laser melting (SLM) is investigated. The results showed that the texture of AMed parts can be controlled by suitable heat treatment, based on the residual stress during AM processing acting as the drive force to recrystallization. For SLMed Inconel 718 samples with columnar grains, anisotropic LCF properties exist, while no obvious sensitivity to orientations is shown for samples with equiaxed grains. This work is significantly meaningful to speed up the design-to-product transformation of safety-critical AM parts and optimize the orientation of components for various applications.


2019 ◽  
Vol 764 ◽  
pp. 138189 ◽  
Author(s):  
G. Moeini ◽  
S.V. Sajadifar ◽  
T. Wegener ◽  
F. Brenne ◽  
T. Niendorf ◽  
...  

Metals ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 32 ◽  
Author(s):  
Ricardo Branco ◽  
José Costa ◽  
Filippo Berto ◽  
Seyed Razavi ◽  
José Ferreira ◽  
...  

Author(s):  
Franco Concli ◽  
Lorenzo Fraccaroli ◽  
Filippo Nalli ◽  
Luca Cortese

AbstractIn the last years, additive manufacturing (AM) has turned into an emerging technology and an increasing number of classes of material powders are now available for this manufacturing process. For large-scale adoption, an accurate knowledge of the mechanical behaviour of the resulting materials is fundamental, also considering that reliable data are often lacking and dedicated standards are still missing for these AM alloys. In this regard, the aim of the present work is to characterize both the high-cycle-fatigue (HFC) and the low-cycle-fatigue (LCF) behaviour of AM 17–4 PH stainless steel (SS). To better understand the performance of the selected alloy, four series of cylindrical samples were manufactured. Three series were produced via selective laser melting (SLM), better known as laser-based powder bed fusion of metals technology using an EOS M280 machine. The first series was tested in the as-built condition, the second was machined before testing to obtain a better surface finishing, while the third series was post-processed via hot isostatic pressing (HIP). Finally, a fourth series of samples was produced from the wrought 17–4 PH material counterpart, for comparison. The understanding and assessment of the influence of surface finishing on the fatigue behaviour of AM materials are fundamental, considering that in most applications the AM parts may present reticular or lattice structures, internal cavities or complex geometries, which must be set into operation in the as-built conditions, since a surface finishing postprocess is not convenient or not feasible at all. On the other side, a HIP process is often suggested to reduce the internal porosities and, therefore, to improve the resulting mechanical properties. The high-cycle-fatigue limits were obtained with a short staircase approach according to the Dixon statistical method. The maximum number of cycles (run-out) was set equal to 50,00,000. The part of the Wöhler diagram relative to finite life was also characterized by means of additional tests at higher stress levels. On the other side, the low-cycle tests allowed to tune the Ramberg–Osgood cyclic curves and the Basquin–Coffin–Manson LCF curves. The results obtained for the four different series of specimens permitted to quantify the reduction of the mechanical performance due to the actual limits of the laser-based powder bed fusion technology (surface quality, internal porosity, different solidification) with respect to traditional manufacturing and could be used to improve design safety and reliability, granting structural integrity of actual applications under elastic and elasto-plastic fatigue loads.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1001
Author(s):  
Zongxian Song ◽  
Wenbin Gao ◽  
Dongpo Wang ◽  
Zhisheng Wu ◽  
Meifang Yan ◽  
...  

This study investigates the very-high-cycle fatigue (VHCF) behavior at elevated temperature (650 °C) of the Inconel 718 alloy fabricated by selective laser melting (SLM). The results are compared with those of the wrought alloy. Large columnar grain with a cellular structure in the grain interior and Laves/δ phases precipitated along the grain boundaries were exhibited in the SLM alloy, while fine equiaxed grains were present in the wrought alloy. The elevated temperature had a minor effect on the fatigue resistance in the regime below 108 cycles for the SLM alloy but significantly reduced the fatigue strength in the VHCF regime above 108 cycles. Both the SLM and wrought specimens exhibited similar fatigue resistance in the fatigue life regime of fewer than 107–108 cycles at elevated temperature, and the surface initiation mechanism was dominant in both alloys. In a VHCF regime above 107–108 cycles at elevated temperature, the wrought material exhibited slightly better fatigue resistance than the SLM alloy. All fatigue cracks are initiated from the internal defects or the microstructure discontinuities. The precipitation of Laves and δ phases is examined after fatigue tests at high temperatures, and the effect of microstructure on the formation and the propagation of the microstructural small cracks is also discussed.


Sign in / Sign up

Export Citation Format

Share Document