Influence of test conditions and high temperatures on mechanical properties of heat-resistant cobalt alloy produced by selective laser melting

Author(s):  
S. A. Golynets ◽  
◽  
S. A. Naprienko ◽  
A. M. Rogalev ◽  
◽  
...  
2015 ◽  
Vol 834 ◽  
pp. 71-76
Author(s):  
Tatiana Vasilievna Tarasova ◽  
Aleksey Petrovich Nazarov ◽  
Andrey Vladimirovich Gusarov

The technological possibilities of 3D object manufacturing with complex geometry from heat-resistant cobalt alloy by method of selective laser melting is considered in the work. The boundary conditions of the SLM and the way of its overcoming are demonstrated.


2021 ◽  
pp. 66-70
Author(s):  
A. G. Grigoryants ◽  
D. S. Kolchanov ◽  
A. A. Drenin ◽  
A. O. Denezhkin

Selective laser melting (SLM) technology is a promising method for manufacturing complex parts from many metals and alloys. Copper and copper alloys are widely used in industry due to its high thermal conductivity and low resistivity. The use of chromium as an alloying element can increase the heat resistance of copper and its mechanical properties. In this work, samples were made of heat-resistant copper alloy ПР-БрХ to determine their mechanical properties and porosity values. Before the experiments, particle size, morphological and chemical analysis of the powder was carried out. Samples were prepared using the Additive Solutions D250 selective laser melting facility and a multidirectional laser scanning strategy for the powder layer. As a result of the experiments, samples with porosity of less than 5% were obtained. Which were then subjected to tensile tests and computed tomography. However, some samples were subjected to heat treatment. The test results showed that σ0.2 averages 166.3 MPa, σв — 198 MPa, σp — 42 MPa, ψ — 8.9%, δ — 3.2%. It was also revealed that heat treatment of samples leads to a decrease in strength properties while maintaining plastic. The research was conducted under financial support of the Russian Foundation of Basic Research within the framework of the scientific project No. 18-38-00940\19.


2021 ◽  
Vol 31 (5) ◽  
pp. 1350-1362
Author(s):  
Yong HU ◽  
Xiao-kang YANG ◽  
Wen-jiang KANG ◽  
Yu-tian DING ◽  
Jia-yu XU ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


Sign in / Sign up

Export Citation Format

Share Document