NON-DESTRUCTIVE TESTING OF THE AIR SCREW BLADE'S FILLER AND PERMANENT CONNECTIONS MADE FROM POLYMER COMPOSITE MATERIAL

2018 ◽  
pp. 83-92 ◽  
Author(s):  
V.V. Murashov ◽  
◽  
S.I. Yakovleva ◽  
2017 ◽  
Vol 79 (5-2) ◽  
Author(s):  
Wan Norhisyam Abd Rashid ◽  
Elmy Johana Mohamad ◽  
Ruzairi Abdul Rahim ◽  
A Shamsul Rahimi Subki ◽  
Abdul Latiff Ahood ◽  
...  

In this paper, a conceptual framework for a non destructive testing to check defect on composite material using parallel plate electrical capacitance tomography is being proposed. At the early stage, the possibility of using this method is being simulated using Comsol Multiphysic software. The simulation process has shown promising results to make this concept works. When a dielectric material is placed between the parallel plates, the permittivity distribution can be observed. As the number of electrodes of the sensor are increased from 2 to 8 electrodes, the capacitance value increase from 2.0131e-11-2.3532e-14i F to 5.2474e-11-3.0756e-13i F. Furthermore, there are significant results when the size and the permittivity of the object are varies. 


2021 ◽  
pp. 4-15
Author(s):  
S. O. Kozel'skaya ◽  
D. A. Akimov ◽  
A. S. Andreev ◽  
O. N. Budadin ◽  
V. V. Kotel'nikov

The problem of assessing operational stability and, accordingly, assessing the storage and safe operation periods of objects (for example, load-bearing structural structures made of polymer composite materials (PCM)) has always been one of the most important. At present, this prediction problem is mainly solved on the basis of product testing, as well as a detailed study of the regularities of the physicochemical aging processes occurring in PCM and changes in the physical and mechanical characteristics of products, and the creation on this basis of appropriate test methods and mathematical prediction models. The paper considers the problem of increasing the reliability of assessing the maximum service life of multicomponent structures by constructing predictive models using the results of optical-thermal and electrical non-destructive testing of the state of objects by temperature fields and the value of internal deformation of the material under force on the structure as input information. It is shown that in the case of using logical approaches as a software tool for predicting the ultimate resource of structures made of polymer composite materials, part of the knowledge should be used for reasoning that provides an explanation of the conclusions drawn, since formal logic is of limited applicability, especially in conditions of incomplete or uncertain information. In this case, the solution to the problem becomes the identification and establishment of cause-and-effect relationships. For the tasks of technical assessment of the quality of structures and their service life, the use of such logical conclusions as inductive, deductive and analogous conclusions is impossible, since for their work, they require all information about the diagnosed structure. The use of the proposed method for assessing the service life will allow timely stopping the loading of products with loads and, thus, preventing structural destruction. It should be borne in mind that in order to reliably predict the ultimate service life of complex structures made of composite materials using the proposed method, a set of various input instrumental and subjective information about the structural and operational characteristics of the product is required, including information on intermediate tests, non-destructive testing data. at various stages of manufacturing, design features, stability of parameters during the development process, subjective opinions of specialists, changes in the properties of materials from time to time and loads, etc. Implementation of the proposed approach will allow creating a new generation of test methods and predicting operational stability with an assessment of the limiting service life of elements and structures, which, ultimately, will provide an additional opportunity for developing practical recommendations for confirming or extending the warranty periods of operation and increasing the reliability and safety of operation of structures.


2021 ◽  
Vol 3 (134) ◽  
pp. 135-148
Author(s):  
Svitlana Klymenko ◽  
Pavlo Kiselyov ◽  
Oleksii Kulyk

The development of modern rocket and space technology (RST) is characterized by constant improvement: increasing speed, range and altitude. Improving these characteristics, through modernization, has led to a significant complication of the design of RST and its equipment. Among the most promising materials for the manufacture of RST structures are more often used polymer composite materials (PCM), which are increasingly used in modern RST engineering, especially in cases where no other material meets the new requirements. Quality control of RST products depends on determining the condition of materials in these facilities, both in production and in operating conditions, which must be carried out both in the production process (with the deviation of production processes may form different types of structure heterogeneity: porosity, foreign inclusions, stratification and cracks) and during operation. In polymer composite materials RST, namely to detect defects such as delamination and cracks using ultrasonic non-destructive testing. An analysis of the use of traditional ultrasonic non-destructive testing using a portable ultrasonic flaw detector using high-frequency transducers. It has been determined that it is sufficient to use portable ultrasonic flaw detectors to detect longitudinal cracks or stratifications, but for more reliable detection and detection of defects, completeness of control should use automated ultrasonic control systems that have greater sensitivity and scanning speed. defective zones with the possibility of constructing a qualitative image of the defective zone for further assessment of the performance of the entire structure with PCM.


2017 ◽  
Vol 2 (87) ◽  
pp. 66-74
Author(s):  
J. Nowacki ◽  
N. Sieczkiewicz

Purpose: Analysis of non-destructive testing systems polymer composite in terms of current solutions in the area of methodology and devices. Analysis of contemporary standards for non-destructive testing of polymer composites established by ASTM. Analysis of Flir ONE camera capabilities in non-destructive testing composite carbon-epoxy composites. Design/methodology/approach: The thermal imaging tests of the carbon-epoxy composite discontinuity were carried out using a thermal imaging camera and Flir One accessory for an iOS phone. The tests were performed on carbon-epoxy composite samples measuring 100x100 mm. In order to simulate the discontinuity in a sample by the Resin Transfer Molding (RTM) method, a 30x30 mm PTFE film was inserted between the reinforcement layers. The thickness of the sample with discontinuity was 2 mm. Water was added to the selected sample sites. Samples were placed on a 50°C heated plate to record thermal images and thermal images combined with visual contours of samples with simulated defects. Area Calculator – SketchAndCalc Icalc, Inc. was used to describe the size and location of the defects. Findings: As a result of the tests, the use of the Flir One thermal imaging device in epoxycarbon composite discontinuity tests has been demonstrated, and a methodology has been proposed to measure geometrical features of defects. Research limitations/implications: The description of welded joint structure and mechanical properties was based on welding toughened steels by using an innovative welding method and a filler that has been proposed. Practical implications: The development of thermal imaging studies of polymer composite discontinuity using the Flir One thermal imaging camera and accessory with iOS opens up the possibility of conducting a basic inspection of composite materials in production plants, and even for simplicity – also in small laboratories. Originality/value: In order to improve the quality of imaging of small items using the Flir One mobile camera, the use of cheap and readily available lenses used in laser optics has been tested positively.


Sign in / Sign up

Export Citation Format

Share Document