scholarly journals Using Learning Analytics to Characterize Student Experimentation Strategies in the Context of Engineering Design

2016 ◽  
Vol 3 (3) ◽  
pp. 291-317 ◽  
Author(s):  
Camilo Vieira ◽  
Molly Hathaway Goldstein ◽  
Şenay Purzer ◽  
Alejandra J. Magana

Engineering design is a complex process. The design process cannot be assessed based solely on a product or as a simple test because there is no single perfect design for a problem. An important design strategy is the conduction of experiments. Informed designers carry out experiments and use their outcomes to inform their next steps. On the other hand, beginning designers do little or no experiments, and the few experiments they do involve confounding variables. These behaviours that differentiate beginning and informed designers are not easy to assess in educational settings because they occur throughout the design process. This paper proposes and evaluates a model to analyze student interactions with a CAD tool in order to identify and characterize the different strategies students use to conduct experiments. A two-fold study is carried out to validate the model. The first phase uses the clickstream data of 51 middle school students working on a design project to create a net-zero energy house. The analysis of clickstream data is compared to a qualitative analysis of an open-ended posttest. The second phase correlates the number of experiments students did to the student prototype quality. The results suggest that the proposed model can be used to identify, characterize, and assess student strategies to conduct experiments.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Michael S. Rugh ◽  
Donald J. Beyette ◽  
Mary Margaret Capraro ◽  
Robert M. Capraro

Purpose The purpose of this study is to examine a week-long science, technology, engineering and mathematics (STEM) project-based learning (PBL) activity that integrates a new educational technology and the engineering design process to teach middle and high school students the concepts involved in rotational physics. The technology and teaching method described in this paper can be applied to a wide variety of STEM content areas. Design/methodology/approach As an educational technology, the dynamic and interactive mathematical expressions (DIME) map system automatically generates an interactive, connected concept map of mathematically based concepts extracted from a portable document format textbook chapter. Over five days, students used DIME maps to engage in meaningful self-guided learning within the engineering design process and STEM PBL. Findings Using DIME maps within a STEM PBL activity, students explored the physics behind spinning objects, proposed multiple creative designs and built a variety of spinners to meet specified criteria and constraints. Practical implications STEM teachers can use DIME maps and STEM PBL to support their students in making connections between what they learn in the classroom and real-world scenarios. Social implications For any classroom with computers, tablets or phones and an internet connection, DIME maps are an accessible educational technology that provides an alternative representation of knowledge for learners who are underserved by traditional methods of instruction. Originality/value For STEM teachers and education researchers, the activity described in this paper uses advances in technology (DIME maps and slow-motion video capture on cell phones) and pedagogy (STEM PBL and the engineering design process) to enable students to engage in meaningful learning.


2017 ◽  
Vol 75 (4) ◽  
pp. 375-393
Author(s):  
Nyet Moi Siew

This research was conducted to evaluate the scientific imagination of Grade 10 students from one Malaysian rural secondary school that adopted the integration of the imagination process in an Engineering Design Process (EDPI) through an outreach program in STEM. Three stages of scientific imagination process were evaluated: initiation, dynamic adjustment, and virtual implementation. A total of 50 students aged 16 participated in a 10-hour program, which engaged them in designing and building two different prototypes. Data on students’ scientific imagination were captured through a pre-test and post-test, and teachers’ field notes based on focus group interviews and observations. The results of paired sample t-tests showed significant differences in all three stages of scientific imagination process, except in the brainstorming of the initiation stage. The findings reveal that students required both personal experience and social or environment interactions in order to progress from the initiation stage to the virtual implementation stage. The findings also suggested that the EDPI approach is able to create a supportive environment for fostering scientific imagination among rural secondary school students. Keywords: engineering design process, scientific imagination, STEM.


2016 ◽  
Vol 15 (4) ◽  
pp. 477-493
Author(s):  
Nyet Moi Siew ◽  
Henry Goh ◽  
Fauziah Sulaiman

This research was conducted to evaluate the learning experience of Grade Ten students from two Malaysian rural secondary schools that adopted the integration of STEM in an Engineering Design Process (STEM-EDP) approach vis-á-vis an outreach challenge program. A total of 89 students undertook a ten hour program which engaged them in designing and building three different prototypes as well as answering higher order thinking questions. Data on students’ learning experience were captured through participants’ responses to a six-point Likert scale questionnaire, teachers’ field notes, and open-ended questions. The questionnaire result reveals statistically significant gains in knowledge or skills about, attitudes toward, and practices on STEM. The STEM-EDP outreach challenge program brought awareness to rural school students of their potential as problem solvers, thinkers, creators, and collaborators. Students were able to simultaneously broaden their boundaries in knowledge and competency even though they experienced difficulties in tackling challenges associated with STEM activities. Findings suggested that the STEM-EDP approach can be applied as a means for fostering creativity, problem solving skills, and thinking skills among rural secondary school students. Keywords: engineering design process, higher order thinking, outreach challenge program, rural schools, STEM.


Author(s):  
R. Michael Anderson ◽  
Hussain U. Bahia

The design of asphalt mixtures is a complex process that requires the proper proportioning of materials to satisfy mixture volumetric and mechanical properties. The majority of time spent in the mix design process is used in evaluating and selecting aggregate gradations to meet project requirements. The latest set of requirements for asphalt mixtures is the Superpave system, developed during the Strategic Highway Research Program. This system incorporates materials selection, evaluation of trial aggregate structures, selection of design asphalt binder content, moisture sensitivity, and, in some cases, determination of performance properties of the selected asphalt-aggregate blend. The selection of a design aggregate structure reduces to selecting an aggregate gradation that will meet minimum volumetric and densification criteria, and selecting an aggregate structure that will provide adequate resistance to permanent deformation, fatigue, and thermal cracking. In the Superpave volumetric mix design process, achieving voids in mineral aggregate (VMA) is the most difficult task facing the mix designer. One phase of this evaluation focuses on providing Guidelines to achieve VMA requirements with Superpave mix designs. This phase was accomplished by evaluating the existing database of information on Superpave mix designs at the Asphalt Institute. The second phase examines the relationship between properties determined during the Superpave volumetric mix design process, and material properties determined by mix analysis tests.


2019 ◽  
Vol 81 (8) ◽  
pp. 570-576
Author(s):  
Taylor Holder ◽  
Laura Pottmeyer ◽  
Frackson Mumba

Students often find it challenging to learn about complex and abstract biological processes. Using the engineering design process, which involves designing, building, and testing prototypes, can help students visualize the processes and anchor ideas from lab activities. We describe an engineering-design-integrated biology unit designed for high school students in which they learn about the properties of slime molds, the difference between eukaryotes and prokaryotes, and the iterative nature of the engineering design process. Using the engineering design process, students were successful in quarantining the slime mold from the non-inoculated oats. A t-test revealed statistically significant differences in students' understanding of slime mold characteristics, the difference between eukaryotes and prokaryotes, and the engineering design process before and after the unit. Overall, students demonstrated sound understanding of the biology core ideas and engineering design skills inherent in this unit.


Author(s):  
Nyet Moi Siew

This research was conducted to explore the STEM imagination of Grade 10 students from one Malaysian rural secondary school that adopted the integration of the imagination process in an Engineering Design Process (EDP) through an outreach program in STEM. Four stages of the STEM imagination process were examined: initiation, dynamic adjustment, virtual implementation and implementation. A total of 50 students aged 16 participated in a 10-hour program which engaged them in designing and building two different prototypes. Data on students’ STEM imagination were captured through teachers’ field notes based on focus group interviews and observations. The findings reveal that students needed to draw from their lived experiences to brainstorm problems and solutions around a given scenario, and to arrive at a workable solution in order to move from the initiation to the implementation stage. The findings also suggested that the EDP approach is able to create a supportive environment for nurturing STEM imagination among rural secondary school students.


Sign in / Sign up

Export Citation Format

Share Document