THE ROLE OF CRYPTOCHROMES UNDER THE ACTION OF UV-RADIATION ON THE PHOTOSYNTHETIC APPARATUS OF PLANTS ARABIDOPSIS THALIANA

News of FSVC ◽  
2019 ◽  
pp. 90-92
2021 ◽  
Vol 12 ◽  
Author(s):  
Si-Jia Yang ◽  
Bo Huang ◽  
Yu-Qing Zhao ◽  
Di Hu ◽  
Tao Chen ◽  
...  

Land plants live in a crisis-filled environment and the fluctuation of sunlight intensity often causes damage to photosynthetic apparatus. Phyto-melatonin is an effective bioactive molecule that helps plants to resist various biotic and abiotic stresses. In order to explore the role of melatonin under high light stress, we investigated the effects of melatonin on anti-oxidative system and photosynthesis of Arabidopsis thaliana under high light. Results showed that exogenous melatonin increased photosynthetic rate and protected photosynthetic proteins under high light. This was mainly owing to the fact that exogenous melatonin effectively decreased the accumulation of reactive oxygen species and protected integrity of membrane and photosynthetic pigments, and reduced cell death. Taken together, our study promoted more comprehensive understanding in the protective effects of exogenous melatonin under high light.


Author(s):  
V. I. Belkov ◽  
K. E. Belogub ◽  
E. Yu. Garnik ◽  
V. I. Tarasenko ◽  
Yu. M. Konstantinov

The initial formation of the photosynthetic apparatus in plants occurs during photomorphogenesis. The red/far-red (phytochromes) and blue (cryptochrome) light protein-photoreceptors play the most important role in photomorphogenesis initiation and regulation. The exited phytochrome and cryptochrome molecules can interact with transcription factors, changing the expression of nuclear genes, which encode the proteins of the plant photosynthetic apparatus. Since light is a variable factor, plants have developed appropriate adaptation mechanisms, including their photosynthetic apparatus protection. The mechanism of state transitions ensures a rapid adaptation of the photosynthetic apparatus. This adaptation mechanism increases the adsorption efficiency under current light conditions and prevents intensive generation of active forms of oxygen in chloroplasts, which leads to photo-oxidation and even cell death. This work aims to determine the role of photoreceptors - phytochromes A and B, as well as cryptochrome 1 and 2 - in regulating the process of state transitions in the Arabidopsis thaliana model plant. Arabidopsis mutants with the defects on A and B phytochromes and cryptochrome 1 and 2 genes were used as the research objects. The blue native electrophoresis in polyacrylamide gel was used to visualise state transitions. It was found that these photoreceptors had no direct effect on the redox-regulation of the state transitions mechanism in Arabidopsis. Presumably, these photoreceptors protect the photosynthetic apparatus from excessive light not by regulating the state transitions but indirectly, through regulating the chlorophyll, carotenoid and antioxidant components content.


2020 ◽  
Vol 19 (2) ◽  
pp. 217-228
Author(s):  
Susanne Neugart ◽  
Éva Hideg ◽  
Gyula Czégény ◽  
Monika Schreiner ◽  
Åke Strid

We show the important and dual role of VitB6 as both an antioxidant and an enzymatic co-factor in Arabidopsis plants under exposure to supplementary UV radiation.


2020 ◽  
Vol 44 (1) ◽  
pp. 114-129
Author(s):  
Jing‐Wen Yao ◽  
Zheng Ma ◽  
Yan‐Qin Ma ◽  
Ying Zhu ◽  
Meng‐Qi Lei ◽  
...  

Dose-Response ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 155932582097924
Author(s):  
Darya Babina ◽  
Marina Podobed ◽  
Ekaterina Bondarenko ◽  
Elizaveta Kazakova ◽  
Sofia Bitarishvili ◽  
...  

Plant growth response to γ-irradiation includes stimulating or inhibitory effects depending on plant species, dose applied, stage of ontogeny and other factors. Previous studies showed that responses to irradiation could depend on ABA accumulation and signaling. To elucidate the role of ABA in growth and photosynthetic responses to irradiation, lines Col-8, abi3-8 and aba3 -1 of Arabidopsis thaliana were used. Seeds were γ-irradiated using 60Co in the dose range 50-150 Gy. It was revealed that the dose of 150 Gy affected germination parameters of aba3 -1 and Col-8 lines, while abi3-8 line was the most resistant to the studied doses and even showed faster germination at early hours after γ-irradiation at 50 Gy. These results suggest that susceptibility to ABA is probably more important for growth response to γ-irradiation than ABA synthesis. The photosynthetic functioning of 16-day-old plants mainly was not disturbed by γ-irradiation of seeds, and no indication of photosystem II photoinhibition was noticed, revealing the robustness of the photosynthetic system of A. thaliana. Glutathione peroxidase activity and ABA concentrations in plant tissues were not affected in the studied dose range. These results contribute to the understanding of germination and photosynthesis fine-tuning and of mechanisms of plant tolerance to ionizing radiation.


Sign in / Sign up

Export Citation Format

Share Document