scholarly journals Regulation of the regenerative activity of dental pulp stem cells from exfoliated deciduous teeth (SHED) of children by TGF-β1 is associated with ALK5/Smad2, TAK1, p38 and MEK/ERK signaling

Aging ◽  
2020 ◽  
Vol 12 (21) ◽  
pp. 21253-21272
Author(s):  
Hsiao-Hua Chang ◽  
Il-Ly Chen ◽  
Yin-Lin Wang ◽  
Mei-Chi Chang ◽  
Yi-Ling Tsai ◽  
...  
2008 ◽  
Vol 55 (3) ◽  
pp. 170-179 ◽  
Author(s):  
Vera Todorovic ◽  
Dejan Markovic ◽  
Nadezda Milosevic-Jovcic ◽  
Marijana Petakov ◽  
Bela Balint ◽  
...  

To date, three types of dental stem cells have been isolated: Dental Pulp Stem Cells (DPSC), Stem Cells From Human Exfoliated Deciduous Teeth (SHED) and Immature Dental Pulp Stem Cells (IDPC). These dental stem cells are considered as mesenchymal stem cells. They reside within the perivascular niche of dental pulp. They are highly proliferative, clonogenic, multipotent and are similar to mesenchymal Bone Marrow Stem Cells (BMSC). Also, they have high plasticity and can be easy isolated. The expressions of the alkaline phosphatase gene, dentin matrix protein 1 and dentinsialophosphoprotein are verified in these cells. Analyses of gene expression patterns indicated several genes which encode extracellular matrix components, cell adhesion molecules, growth factors and transcription regulators, cell signaling, cell communication or cell metabolism. In both conditions, in vivo and in vitro, these cells have the ability to differentiate into odontoblasts, chondrocytes, osteoblasts, adipocytes, neurons, melanocytes, smooth and skeletal muscles and endothelial cells. In vivo, after implantation, they have shown potential to differentiate into dentin but also into tissues like bone, adipose or neural tissue. In general, DPSCs are considered to have antiinflammatory and immunomodulatory abilities. After being grafted into allogenic tissues these cells are ableto induce immunological tolerance. Immunosuppressive effect is shown through the ability to inhibit proliferation of T lymphocytes. Dental pulp stem cells open new perspectives in therapeutic use not only in dentin regeneration, periodontal tissues and skeletoarticular, tissues of craniofacial region but also in treatment of neurotrauma, autoimmune diseases, myocardial infarction, muscular dystrophy and connective tissue damages.


2019 ◽  
Vol 35 (4) ◽  
Author(s):  
Shagufta Naz ◽  
Farhan Raza Khan ◽  
Raheela Rahmat Zohra ◽  
Sahreena Salim Lakhundi ◽  
Mehwish Sagheer Khan ◽  
...  

Objective: To isolate dental pulp mesenchymal stem cells (MSCs) from non-infected human permanent and deciduous teeth. Methods: It was an in-vitro experimental study. Human teeth were collected from 13 apparently healthy subjects including nine adults and four children. After decoronation dental pulps were extirpated from teeth and cultured via explant method in a stem cell defined media. Data was analyzed by descriptive statistics. Results: As above MSCs emerged exhibiting fibroblast-like morphology. In vitro culture was positive for 100% (9/9) and 75% (3/4) of the permanent and deciduous teeth respectively. First cell appeared from deciduous teeth pulp in 10±6.2 days while permanent teeth pulp took 12.4±3.7 days. Together, 26.6±3.6 and 24.5±3.5 days were required for permanent and deciduous tooth pulp stem cells to be ready for further assays. Conclusions: The protocol we developed is easy and consistent and can be used to generate reliable source of MScs for engineering of calcified and non-calcified tissue for regenerative medicine approaches. doi: https://doi.org/10.12669/pjms.35.4.540 How to cite this:Naz S, Khan FR, Zohra RR, Lakhundi SS, Khan MS, Mohammed N, et al. Isolation and culture of dental pulp stem cells from permanent and deciduous teeth. Pak J Med Sci. 2019;35(4):---------. doi: https://doi.org/10.12669/pjms.35.4.540 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2021 ◽  
Author(s):  
Shunichi Kajioka ◽  
Junko Yoshizumi ◽  
Yoshinao Oda ◽  
Naoko Iwata ◽  
Chiho Takai ◽  
...  

Abstract Hirschsprung’s disease (HSCR) and its allied disorders are congenital entero-neuropathies with life-long implications in many cases. Here we report the effects of intravenous transplantation of cultured dental pulp stem cells derived from deciduous teeth (dDPSCs) into ‘Japanese fancy-1’ (JF1) mice with entero-neuropathy caused by Ednrb mutation. Intravenously injected dDPSCs (multipotent neural crest cells with low immunogenicity) migrated to affected regions of the intestine through interactions between stromal cell-derived factor-1α and C-X-C chemokine receptor type-4. Notably, transplanted dDPSCs differentiated into both enteric neurons and pacemaker interstitial cells to correct abnormalities in the electrical and mechanical activities of the proximal colon. dDPSC transplantation also led to repair of the small intestinal mucosa, changes in the gastrointestinal microbiota, improvements in nutritional status and prolongation of survival. We anticipate that dDPSC transplantation could be developed into a novel cell-based therapy for HSCR and its allied disorders.


2015 ◽  
Vol 20 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Stefanie Bressan Werle ◽  
Daniele Lindemann ◽  
Daniela Steffens ◽  
Flávio Fernando Demarco ◽  
Fernando Borba de Araujo ◽  
...  

Biology ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 160 ◽  
Author(s):  
Shinichiro Yoshida ◽  
Atsushi Tomokiyo ◽  
Daigaku Hasegawa ◽  
Sayuri Hamano ◽  
Hideki Sugii ◽  
...  

Mesenchymal stem cells (MSCs) have the capacity for self-renewal and multilineage differentiation potential, and are considered a promising cell population for cell-based therapy and tissue regeneration. MSCs are isolated from various organs including dental pulp, which originates from cranial neural crest-derived ectomesenchyme. Recently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs) have been isolated from dental pulp tissue of adult permanent teeth and deciduous teeth, respectively. Because of their MSC-like characteristics such as high growth capacity, multipotency, expression of MSC-related markers, and immunomodulatory effects, they are suggested to be an important cell source for tissue regeneration. Here, we review the features of these cells, their potential to regenerate damaged tissues, and the recently acquired understanding of their potential for clinical application in regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document