scholarly journals Effective elimination of adult B-lineage acute lymphoblastic leukemia by disulfiram/copper complex in vitro and in vivo in patient-derived xenograft models

Oncotarget ◽  
2016 ◽  
Vol 7 (50) ◽  
pp. 82200-82212 ◽  
Author(s):  
Manman Deng ◽  
Zhiwu Jiang ◽  
Yin Li ◽  
Yong Zhou ◽  
Jie Li ◽  
...  
PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e36429 ◽  
Author(s):  
Craig T. Wallington-Beddoe ◽  
Anthony S. Don ◽  
John Hewson ◽  
Qiao Qiao ◽  
Rachael A. Papa ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2534-2534 ◽  
Author(s):  
Angela Maria Savino ◽  
Jolanda Sarno ◽  
Luca Trentin ◽  
Margherita Vieri ◽  
Grazia Fazio ◽  
...  

Abstract B Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) represents 35% of all cancers in pediatric age group. The cure rate for this disease approaches 90% with current treatment regimens, however only a third of patients with relapse are cured. Therefore, there is an urgent need to focus on subgroups of patients with hallmarks of bad prognosis that could benefit from novel therapeutic approaches. Alterations of Cytokine Receptor-like Factor 2 (CRLF2), a negative prognostic factor in pediatric BCP-ALL, have been identified in up to 10% of patients. However these patients represent half of the high risk Ph-like ALL and of Down Syndrome-associated BCP-ALL. Rearrangements of CRLF2 result in the overexpression of this component of the heterodimeric cytokine receptor for thymic stromal lymphopoietin (TSLP) and is associated with activating mutations of the JAK-STAT pathway. Together these cause hyperactivation of JAK/STAT and PI3K/mTOR signaling. Inhibition of CRLF2/JAK2 signaling has the potential to become a therapeutic targeted intervention for this subgroup of poor prognostic patients. Previous studies have shown that the HDAC inhibitor Givinostat/ITF2357 has potent anti-tumor activity against hematological malignancies, particularly JAK2V617F mutated myeloproliferative neoplasms (MPN) such as polycythemia vera, for which it has already a clinic application and established safety profile. We therefore studied the in vitro and in vivo efficacy of Givinostat in cases with CRLF2 rearrangements. Here we demonstrated that Givinostat inhibited proliferation and induced apoptosis of BCP-ALL CRLF2-rearranged MHH-CALL4 and MUTZ5 cell lines positive for exon 16 JAK2 mutations. Of note, the observed IC50 values for MHH-CALL4 were lower than those for the SET2 cell line positive control bearing JAK2V617F mutation, both for proliferation (IC50: 0.08±0.05µM vs. 0.14±0.03µM) and apoptosis (IC50: 0.17±0.03µM vs. 0.22±0.04µM). We next investigated the effect of Givinostat on blasts from CRLF2 rearranged BCP-ALL patient samples. For this purpose we developed xenograft models of human CRLF2 rearranged ALL to expand cells from patients and to recapitulate human leukemia in recipient mice. ALL blasts isolated from xenografts were co-cultured on OP9 stroma to perform ex vivo assays. Consistent with our findings in cell lines, Givinostat (0.2µM) reduced the % of live cells (Annexin V/Sytox negative) in all xenografts treated with the drug. In particular, after 72 hours, Givinostat was able to kill up to >90% of blast cells in all xenografts in contrast with the vehicle-treated samples which showed 25-60% of blasts still alive after treatment. The induction of cell death in Givinostat treated primografts was confirmed on primary samples from diagnosis using CyTOF which allowed us to observe that CD10+/CRLF2+ blasts were preferentially killed by the drug whereas CD45 high expressing cells (normal residue) remained unaffected by the treatment. Moreover, at low doses (0.2 µM), Givinostat downregulated genes of the JAK/STAT pathway (STAT5A, JAK2, IL7Rα, CRLF2, BCL2L1 and cMYC) and inhibited the basal and ligand induced signaling, reducing the phoshporylation of STAT5 in all tested primografts (mean fold decrease of pSTAT5: 2.4+0.6). Most importantly, to understand if the transcriptional downregulation of CRLF2 resulted in a functional effect, the downmodulation of CRLF2 protein was observed by flow cytometry (mean fold decrease 3.55+1.38). In vivo, Givinostat significantly reduced engraftment of human blasts in xenograft models of CRLF2 positive BCP-ALL (ranging from 1.9 to 34 fold decrease in bone marrow). Furthermore, Givinostat augmented the effect of chemotherapy in inhibiting proliferation and inducing apoptosis in CRLF2 rearranged cell lines and in primografts, in vitro. After 72 hours, the combined treatment reached 4.6-8.8 fold lower % of remaining viable blasts than chemotherapy alone (6.3-35.3% viable cells in chemotherapy-treated samples vs 1.4-4.3% of combination), 2.5-8.5 fold lower than Givinostat alone (4.3-36.4% vs 1.4-4.3%) and 2.4-13 fold lower than Methyl-prednisolone (5.2-39.1 vs 1-16.3%). In conclusion, Givinostat may represent a novel and effective tool, in combination with current chemotherapy, to treat this difficult to handle subset of ALL and these data strongly argue for the translation of Givinostat in combination with conventional therapy into human trials. Disclosures Davis: Fluidigm, Inc: Honoraria. Nolan:Fluidigm, Inc: Equity Ownership.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 277-277
Author(s):  
Denis M Schewe ◽  
Ameera Alsadeq ◽  
Gunnar Cario ◽  
Simon Vieth ◽  
Thomas Valerius ◽  
...  

Abstract Introduction: CD19 antibody therapy may represent an attractive treatment option in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Since conventional CD19 antibodies have failed in clinical trials, different strategies are evaluated to target CD19 more efficiently. Beside the bispecific T cell engager blinatumomab and chimeric antigen receptor T-cells, antibody drug conjugates and antibodies with engineered fragments crystallisable(Fc)for improved effector cell engagement are under investigation. Here, we demonstrate the efficacy of Fc-engineered CD19 antibodies in minimal residual disease (MRD) xenograft models of pediatric BCP-ALL. We further suggest an important contribution of macrophages for this type of therapy. Methods: An Fc-engineered CD19 antibody carrying amino acid mutations S239D/I332E (CD19-DE) and its native CD19-IgG1 variant were generated according to published sequences. CD19-DE was analyzed in patient-derived leukemia xenografts from infants with MLL-rearranged BCP-ALL, which were established by intrafemoral transplantation of 100 cells per animal in NOD-SCID-gamma-/- (NSG) mice lacking a functional lymphatic compartment. CD19-DE was injected intraperitoneally (1 mg/kg on days +1, +3, +6, +10, +13, and every 21 days thereafter; MRD-model). In some experiments leukemia development (defined as >1% peripheral blasts; overt leukemia model) was awaited before CD19-DE was applied alone, or in combination with a regimen mimicking standard induction chemotherapy (Dexamethasone days 1-5, Vincristine day 1 and PEG-Asparaginase day 1 every 28 days). MRD status was determined by analysis of bone marrow DNA for patient-specific immunoglobulin (Ig)-rearrangements and MLL-fusion genes by polymerase chain reaction. In order to test the role of macrophages as effector cells, macrophages were depleted by intraperitoneal injection of liposomal clodronate. In vitro phagocytosis of BCP-ALL primary cells from xenografts was determined by fluorescence microscopy. For that purpose, macrophages were differentiated from human monocytes with macrophage colony-stimulating factor and BCP-ALL cells were labelled with a fluorescent membrane dye. Results: CD19-DE was efficient in prolonging the survival of NSG xenografts of two patients tested in the MRD-model (p = 0.0072 and p = 0.0015, Kaplan-Meier log rank test, Figure A/B). Interestingly, analyses of bone marrow DNA from the surviving mice for two patient specific Ig-rearrangements and the respective MLL-fusion revealed that 4/5 mice were MRD-negative by Ig-rearrangement and 3/5 mice were MRD-negative by MLL-fusion. In order to identify effector mechanisms, antibody therapy was performed in the MRD-model with and without depletion of macrophages. Macrophage depletion in vivo resulted in a reversal of the beneficial effects of CD19-DE as measured by increases in splenic volumes and percentage of human blasts in the bone marrow, suggesting an important role for macrophages in CD19 antibody therapy. CD19-DE was next analyzed for its ability to engage human macrophages in phagocytosis assays with primary BCP-ALL blasts from xenograft mice in vitro. CD19-DE effectively triggered phagocytosis of BCP-ALL cells, whereas a corresponding native CD19 IgG1 antibody did not (ANOVA, p < 0.0001, Figure C; data points indicate results with macrophages from 5 different donors), which emphasizes the importance of Fc-engineering for the efficacy of CD19 antibodies. Finally, therapy with CD19-DE was initiated in the overt leukemia model alone and in combination with chemotherapy. CD19-DE was still efficient in prolonging survival as compared to control animals (p = 0.0003, Figure D), but the effects were less pronounced. Importantly, the combination of antibody therapy and cytoreductive chemotherapy resulted in prolonged survival of 90% of the animals as compared to control animals (p < 0.0001) or animals treated with chemotherapy alone (p = 0.0054; Figure D). Conclusion: These preclinical in vivo data obtained in xenograft models of BCP-ALL suggest a high therapeutic potential of Fc-engineered CD19 antibodies and indicate an important role for macrophages in that context. Administration of Fc-engineered CD19 antibodies in an MRD situation or concomitant application of the antibody and cytoreductive chemotherapy may represent promising approaches in the therapy of pediatric BCP-ALL. Figure Figure. Disclosures Gramatzki: Janssen: Other: Travel/Accommodation/Expenses, Research Funding.


Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 150
Author(s):  
Anna Richter ◽  
Catrin Roolf ◽  
Anett Sekora ◽  
Gudrun Knuebel ◽  
Saskia Krohn ◽  
...  

In acute lymphoblastic leukemia (ALL), conventional cell lines do not recapitulate the clonal diversity and microenvironment. Orthotopic patient-derived xenograft models (PDX) overcome these limitations and mimic the clinical situation, but molecular stability and engraftment patterns have not yet been thoroughly assessed. We herein describe and characterize the PDX generation in NSG mice. In vivo tumor cell proliferation, engraftment and location were monitored by flow cytometry and bioluminescence imaging. Leukemic cells were retransplanted for up to four passages, and comparative analyses of engraftment pattern, cellular morphology and genomic hotspot mutations were conducted. Ninety-four percent of all samples were successfully engrafted, and the xenograft velocity was dependent on the molecular subtype, outcome of the patient and transplantation passage. While BCR::ABL1 blasts were located in the spleen, KMT2A-positive cases had higher frequencies in the bone marrow. Molecular changes appeared in most model systems, with low allele frequency variants lost during primary engraftment. After the initial xenografting, however, the PDX models demonstrated high molecular stability. This protocol for reliable ALL engraftment demonstrates variability in the location and molecular signatures during serial transplantation. Thorough characterization of experimentally used PDX systems is indispensable for the correct analysis and valid data interpretation of preclinical PDX studies.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


Blood ◽  
1992 ◽  
Vol 80 (5) ◽  
pp. 1316-1323 ◽  
Author(s):  
VM Whitehead ◽  
MJ Vuchich ◽  
SJ Lauer ◽  
D Mahoney ◽  
AJ Carroll ◽  
...  

Abstract Hyperdiploidy (greater than 50 chromosomes, or a DNA index greater than 1.16) confers a favorable prognosis in B-lineage acute lymphoblastic leukemia of childhood. Children with B-lineage acute lymphoblastic leukemia whose lymphoblasts at diagnosis accumulate high levels of methotrexate (MTX) and MTX polyglutamates (MTXPGs) in vitro experience a better event-free survival than those whose lymphoblasts do not (Blood 76:44, 1990). Lymphoblasts from 13 children with hyperdiploidy (greater than 50 chromosomes) accumulated high levels of MTX-PGs (1,095 and 571 to 2,346 pmol/10(9) cells [median and 25% to 75% intraquartile range]). These levels were higher than those in B-lineage lymphoblasts from 19 children with other aneuploidy (326 and 159 to 775 pmol/10(9) cells) and 15 children with diploidy (393 and 204 to 571 pmol/10(9) cells) (P = .0015). Chromosomal trisomies in hyperdiploid cases were highly nonrandom. Chromosome 9 was not one of the chromosomes involved in trisomies, even though this chromosome contains the gene for folate polyglutamate synthetase, which is the enzyme required for MTXPG synthesis. The correlation between MTXPG level and percentage of S- phase cells was weak, suggesting that increased levels of MTXPGs could not be attributed to elevated proportions of cells in active DNA synthesis. The ability of hyperdiploid lymphoblasts to accumulate high levels of MTXPGs may increase their sensitivity to MTX cytotoxicity, accounting in part for the improved outlook for hyperdiploid patients treated with regimens that emphasize MTX as a primary component of continuation therapy.


Blood ◽  
1995 ◽  
Vol 85 (10) ◽  
pp. 2817-2828 ◽  
Author(s):  
FM Uckun ◽  
CF Stewart ◽  
G Reaman ◽  
LM Chelstrom ◽  
J Jin ◽  
...  

Topotecan [(S)-9-dimethylaminomethyl-10-hydroxycamptothecin hydrochloride; SK&F 104864-A, NSC 609699], a water soluble semisynthetic analogue of the alkaloid camptothecin, is a potent topoisomerase I inhibitor. Here we show that topotecan stabilizes topoisomerase I/DNA cleavable complexes in radiation-resistant human B-lineage acute lymphoblastic leukemia (ALL) cells, causes rapid apoptotic cell death despite high-level expression of bcl-2 protein, and inhibits ALL cell in vitro clonogenic growth in a dose-dependent fashion. Furthermore, topotecan elicited potent antileukemic activity in three different severe combined immunodeficiency (SCID) mouse models of human poor prognosis ALL and markedly improved event-free survival of SCID mice challenged with otherwise fatal doses of human leukemia cells at systemic drug exposure levels that can be easily achieved in children with leukemia.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Ilaria Iacobucci ◽  
Andrea Ghelli Luserna Di Rorà ◽  
Maria Vittoria Verga Falzacappa ◽  
Claudio Agostinelli ◽  
Enrico Derenzini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document