scholarly journals Context-aware Decoder for Neural Machine Translation using a Target-side Document-Level Language Model

Author(s):  
Amane Sugiyama ◽  
Naoki Yoshinaga
Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1589
Author(s):  
Yongkeun Hwang ◽  
Yanghoon Kim ◽  
Kyomin Jung

Neural machine translation (NMT) is one of the text generation tasks which has achieved significant improvement with the rise of deep neural networks. However, language-specific problems such as handling the translation of honorifics received little attention. In this paper, we propose a context-aware NMT to promote translation improvements of Korean honorifics. By exploiting the information such as the relationship between speakers from the surrounding sentences, our proposed model effectively manages the use of honorific expressions. Specifically, we utilize a novel encoder architecture that can represent the contextual information of the given input sentences. Furthermore, a context-aware post-editing (CAPE) technique is adopted to refine a set of inconsistent sentence-level honorific translations. To demonstrate the efficacy of the proposed method, honorific-labeled test data is required. Thus, we also design a heuristic that labels Korean sentences to distinguish between honorific and non-honorific styles. Experimental results show that our proposed method outperforms sentence-level NMT baselines both in overall translation quality and honorific translations.


2018 ◽  
Author(s):  
Elena Voita ◽  
Pavel Serdyukov ◽  
Rico Sennrich ◽  
Ivan Titov

Author(s):  
Hongfei Xu ◽  
Deyi Xiong ◽  
Josef van Genabith ◽  
Qiuhui Liu

Existing Neural Machine Translation (NMT) systems are generally trained on a large amount of sentence-level parallel data, and during prediction sentences are independently translated, ignoring cross-sentence contextual information. This leads to inconsistency between translated sentences. In order to address this issue, context-aware models have been proposed. However, document-level parallel data constitutes only a small part of the parallel data available, and many approaches build context-aware models based on a pre-trained frozen sentence-level translation model in a two-step training manner. The computational cost of these approaches is usually high. In this paper, we propose to make the most of layers pre-trained on sentence-level data in contextual representation learning, reusing representations from the sentence-level Transformer and significantly reducing the cost of incorporating contexts in translation. We find that representations from shallow layers of a pre-trained sentence-level encoder play a vital role in source context encoding, and propose to perform source context encoding upon weighted combinations of pre-trained encoder layers' outputs. Instead of separately performing source context and input encoding, we propose to iteratively and jointly encode the source input and its contexts and to generate input-aware context representations with a cross-attention layer and a gating mechanism, which resets irrelevant information in context encoding. Our context-aware Transformer model outperforms the recent CADec [Voita et al., 2019c] on the English-Russian subtitle data and is about twice as fast in training and decoding.


Author(s):  
Xiaomian Kang ◽  
Yang Zhao ◽  
Jiajun Zhang ◽  
Chengqing Zong

Document-level neural machine translation (DocNMT) has yielded attractive improvements. In this article, we systematically analyze the discourse phenomena in Chinese-to-English translation, and focus on the most obvious ones, namely lexical translation consistency. To alleviate the lexical inconsistency, we propose an effective approach that is aware of the words which need to be translated consistently and constrains the model to produce more consistent translations. Specifically, we first introduce a global context extractor to extract the document context and consistency context, respectively. Then, the two types of global context are integrated into a encoder enhancer and a decoder enhancer to improve the lexical translation consistency. We create a test set to evaluate the lexical consistency automatically. Experiments demonstrate that our approach can significantly alleviate the lexical translation inconsistency. In addition, our approach can also substantially improve the translation quality compared to sentence-level Transformer.


Author(s):  
Yingce Xia ◽  
Tianyu He ◽  
Xu Tan ◽  
Fei Tian ◽  
Di He ◽  
...  

Sharing source and target side vocabularies and word embeddings has been a popular practice in neural machine translation (briefly, NMT) for similar languages (e.g., English to French or German translation). The success of such wordlevel sharing motivates us to move one step further: we consider model-level sharing and tie the whole parts of the encoder and decoder of an NMT model. We share the encoder and decoder of Transformer (Vaswani et al. 2017), the state-of-the-art NMT model, and obtain a compact model named Tied Transformer. Experimental results demonstrate that such a simple method works well for both similar and dissimilar language pairs. We empirically verify our framework for both supervised NMT and unsupervised NMT: we achieve a 35.52 BLEU score on IWSLT 2014 German to English translation, 28.98/29.89 BLEU scores on WMT 2014 English to German translation without/with monolingual data, and a 22.05 BLEU score on WMT 2016 unsupervised German to English translation.


Author(s):  
Long Zhou ◽  
Jiajun Zhang ◽  
Chengqing Zong

Existing approaches to neural machine translation (NMT) generate the target language sequence token-by-token from left to right. However, this kind of unidirectional decoding framework cannot make full use of the target-side future contexts which can be produced in a right-to-left decoding direction, and thus suffers from the issue of unbalanced outputs. In this paper, we introduce a synchronous bidirectional–neural machine translation (SB-NMT) that predicts its outputs using left-to-right and right-to-left decoding simultaneously and interactively, in order to leverage both of the history and future information at the same time. Specifically, we first propose a new algorithm that enables synchronous bidirectional decoding in a single model. Then, we present an interactive decoding model in which left-to-right (right-to-left) generation does not only depend on its previously generated outputs, but also relies on future contexts predicted by right-to-left (left-to-right) decoding. We extensively evaluate the proposed SB-NMT model on large-scale NIST Chinese-English, WMT14 English-German, and WMT18 Russian-English translation tasks. Experimental results demonstrate that our model achieves significant improvements over the strong Transformer model by 3.92, 1.49, and 1.04 BLEU points, respectively, and obtains the state-of-the-art per- formance on Chinese-English and English- German translation tasks. 1


2018 ◽  
Author(s):  
Sachith Sri Ram Kothur ◽  
Rebecca Knowles ◽  
Philipp Koehn

2018 ◽  
Author(s):  
Lesly Miculicich ◽  
Dhananjay Ram ◽  
Nikolaos Pappas ◽  
James Henderson

Sign in / Sign up

Export Citation Format

Share Document