Advantages of Implementing Virtual Reality Tools in Design and Technological Preparation of Production

Author(s):  
V.V. Yakhrichev

Along with digital modeling, the key modern technologies include virtual (VR) and augmented (AR) reality, the use of which is a prerequisite for the implementation of the fourth industrial revolution, also known as Industry 4.0. However, at Russian enterprises, these tools have not become widespread yet. The paper analyzes the possibility of using the tools of virtual and augmented reality and introduces the available Russian instruments. Practical examples consider the application in this area of — one of them — the VRConcept system — in detail. The availability of support in the VRConcept system for the data presentation format of the domestic computer-aided design system Compass-3D simplifies its implementation and use at the enterprise.

Author(s):  
Kseniya Reznikova ◽  
Valery Maximov ◽  
Dmitry Popov

Together with the fourth industrial revolution Industry 4.0 in the field of shipbuilding came the concept of Shipbuilding 4.0. Despite its separation from Industry 4.0, the concept also implies the automation of production and implementation of the most advanced technologies. Such technologies include cloud computing, Internet of Things, artificial intelligence, augmented reality and blockchain. Today, all these technologies are heard and familiar to a huge number of people. They continue to be actively developed and implemented in various industries and areas of human life. Heavy industry, namely shipbuilding, was no exception. This article examines the concept of Shipbuilding 4.0 and information technology, it characterizes. Examples of the implementation of the above technologies in the shipbuilding industry are given: at shipyards, in design. Applications in logistics and shipping have also been studied. This work considers such a problem of the Russian shipbuilding industry as poorly developed digitalization. With a high probability, these technologies will soon be actively consolidated in this area and will start everywhere, including at Russian shipyards. The use of innovative developments will improve competitiveness and strengthen positions in the state and market economy. Maritime activity is a very responsible field, where the slightest mistake can lead to bad consequences on a colossal scale. Therefore, the advanced technologies considered in the work have yet to be brought to perfection. However, they already have the potential and direction of development.


2020 ◽  
Vol 1 (1) ◽  
pp. 13-18
Author(s):  
Ronald Bolaños Maroto

An old Chinese proverb says: “What I hear, I forget; what I see, I remember; what I do, I learn”. This wisdom continues to be valid in this 21st century and even more so in this era characterized by the proliferation of new knowledge resulting from accelerated change in all areas of human activity. We are experiencing the Fourth Industrial Revolution, a process as amazing as it is challenging that inevitably leads to reinventing our society - the way we think, relate, and live, but also radically transform production systems, giving rise to a new paradigm that forces us to retrain our workforce at lightning speed, especially technicians and engineers. This implies that we must manage to achieve more effective and faster ways to transfer knowledge. In MECSOFT we find one that we have been using and refining for 20 years. We call it the Pyramid of the Flow of Knowledge (PFC in Spanish); Its results have always been so encouraging that we believe it is very convenient and timely to share it with society, especially at this time when education is urgently reinvented. MECSOFT is a company specialized in Computer Aided Design and Manufacturing and arises from a university research project with the idea of implementing this technology in the Costa Rican productive sector. The objective has been fulfilled thanks to the Pyramid of Knowledge Flow method.


Author(s):  
A. N. Bozhko

Computer-aided design of assembly processes (Computer aided assembly planning, CAAP) of complex products is an important and urgent problem of state-of-the-art information technologies. Intensive research on CAAP has been underway since the 1980s. Meanwhile, specialized design systems were created to provide synthesis of assembly plans and product decompositions into assembly units. Such systems as ASPE, RAPID, XAP / 1, FLAPS, Archimedes, PRELEIDES, HAP, etc. can be given, as an example. These experimental developments did not get widespread use in industry, since they are based on the models of products with limited adequacy and require an expert’s active involvement in preparing initial information. The design tools for the state-of-the-art full-featured CAD/CAM systems (Siemens NX, Dassault CATIA and PTC Creo Elements / Pro), which are designed to provide CAAP, mainly take into account the geometric constraints that the design imposes on design solutions. These systems often synthesize technologically incorrect assembly sequences in which known technological heuristics are violated, for example orderliness in accuracy, consistency with the system of dimension chains, etc.An AssemBL software application package has been developed for a structured analysis of products and a synthesis of assembly plans and decompositions. The AssemBL uses a hyper-graph model of a product that correctly describes coherent and sequential assembly operations and processes. In terms of the hyper-graph model, an assembly operation is described as shrinkage of edge, an assembly plan is a sequence of shrinkages that converts a hyper-graph into the point, and a decomposition of product into assembly units is a hyper-graph partition into sub-graphs.The AssemBL solves the problem of minimizing the number of direct checks for geometric solvability when assembling complex products. This task is posed as a plus-sum two-person game of bicoloured brushing of an ordered set. In the paradigm of this model, the brushing operation is to check a certain structured fragment for solvability by collision detection methods. A rational brushing strategy minimizes the number of such checks.The package is integrated into the Siemens NX 10.0 computer-aided design system. This solution allowed us to combine specialized AssemBL tools with a developed toolkit of one of the most powerful and popular integrated CAD/CAM /CAE systems.


Author(s):  
Klaus Schwab

The rapid pace of technological developments played a key role in the previous industrial revolutions. However, the fourth industrial revolution (Industry 4.0) and its embedded technology diffusion progress is expected to grow exponentially in terms of technical change and socioeconomic impact. Therefore, coping with such transformation require a holistic approach that encompasses innovative and sustainable system solutions and not just technological ones. In this article, we propose a framework that can facilitate the interaction between technological and social innovation to continuously come up with proactive, and hence timely, sustainable strategies. These strategies can leverage economic rewards, enrich society at large, and protect the environment. The new forthcoming opportunities that will be generated through the next industrial wave are gigantic at all levels. However, the readiness for such revolutionary conversion require coupling the forces of technological innovation and social innovation under the sustainability umbrella.


2020 ◽  
Vol 25 (3) ◽  
pp. 505-525 ◽  
Author(s):  
Seeram Ramakrishna ◽  
Alfred Ngowi ◽  
Henk De Jager ◽  
Bankole O. Awuzie

Growing consumerism and population worldwide raises concerns about society’s sustainability aspirations. This has led to calls for concerted efforts to shift from the linear economy to a circular economy (CE), which are gaining momentum globally. CE approaches lead to a zero-waste scenario of economic growth and sustainable development. These approaches are based on semi-scientific and empirical concepts with technologies enabling 3Rs (reduce, reuse, recycle) and 6Rs (reuse, recycle, redesign, remanufacture, reduce, recover). Studies estimate that the transition to a CE would save the world in excess of a trillion dollars annually while creating new jobs, business opportunities and economic growth. The emerging industrial revolution will enhance the symbiotic pursuit of new technologies and CE to transform extant production systems and business models for sustainability. This article examines the trends, availability and readiness of fourth industrial revolution (4IR or industry 4.0) technologies (for example, Internet of Things [IoT], artificial intelligence [AI] and nanotechnology) to support and promote CE transitions within the higher education institutional context. Furthermore, it elucidates the role of universities as living laboratories for experimenting the utility of industry 4.0 technologies in driving the shift towards CE futures. The article concludes that universities should play a pivotal role in engendering CE transitions.


2011 ◽  
Vol 109 ◽  
pp. 711-714
Author(s):  
Ying Jiang ◽  
Jie Liu

Secondary develop system can realize design automation of the common parts, so that software system can automatically inquire the chart and get data, then this could really release design personnel and improve the design efficiency. By secondary develop system of stirred tank users can respectively carry on the design according to their own needs. So secondary develop system has the function of automatic generation graphics, and can generate CAD drawings complying with the design requirement, so it reflected the intelligent performance of the design system. Secondary develop system is able to complete the automatic design of common parts, and can greatly improve the quality and efficiency of design, so it has very important use value. This design realizes the function of automatic graphics generation of transmission of stirred tank, and can generate structure design of common belt wheel.


Author(s):  
А.И. Гайкович ◽  
С.И. Лукин ◽  
О.Я. Тимофеев

Процесс создания проекта судна или корабля рассматривается как преобразование информации, содержащейся в техническом задании на проектирование, нормативных документах и знаниях проектанта, в информацию, объем которой позволяет реализовать проект. Проектирование может быть представлено как поиск решения в пространстве задач. Построение цепочки последовательно решаемых задач составляет методику проектирования. Проектные задачи могут быть разбиты на две группы. Первая группа ‒ это полностью формализуемые задачи, для решения которых есть известные алгоритмы. Например, построение теоретического чертежа по известным главным размерениям и коэффициентам формы. Ко второй группе задач можно отнести трудно формализуемые или неформализуемые задачи. Например, к задачам этого типа можно отнести разработку общего расположения корабля. Важнейшим инструментом проектирования современного корабля или судна является система ав­томатизированного проектирования (САПР). Решение САПР задач первой группы не представляет проблемы. Введение в состав САПР задач второй группы подразумевает разработку специального ма­тематического аппарата, базой для которого, которым является искусственный интеллект, использующий теорию нечетких множеств. Однако, настройка искусственных нейронных сетей, создание шкал для функций принадлежности элементов нечетких множеств и функций предпочтений лица принимающего решения, требует участие человека. Таким образом, указанные элементы искусственного интеллекта фиксируют качества проек­танта как специалиста и создают его виртуальный портрет. The process of design a project of a ship is considered as the transformation of information contained in the design specification, regulatory documents and the designer's knowledge into information, the volume of which allows the project to be implemented. Designing can be represented as a search for a solution in the space of problems. The construction of a chain of sequentially solved tasks constitutes the design methodology. Design problems can be divided into two groups. The first group is completely formalizable tasks, for the solution of which there are known algorithms. For example, the construction of ship's surface by known main dimensions and shape coefficients. Tasks of the second group may in­clude those which are difficult to formalize or non-formalizable. For example, tasks of this type can include develop­ment of general arrangement of a ship. The most important design tool of a modern ship or vessel is a computer-aided design system (CAD). The solu­tion of CAD problems of the first group is not a problem. Introduction of tasks of the second group into CAD implies development of a special mathematical apparatus, the basis for which is artificial intelligence, which uses the theory of fuzzy sets. However, the adjustment of artificial neural networks, the creation of scales for membership functions of fuzzy sets elements and functions of preferences of decision maker, requires human participation. Thus, the above elements of artificial intelligence fix the qualities of the designer as a specialist and create his virtual portrait.


Sign in / Sign up

Export Citation Format

Share Document