scholarly journals Virtual test bench for determining loads affecting an automotive steering system

Author(s):  
Д.С. Вдовин ◽  
◽  
И.В. Чичекин ◽  
Т.Д. Поздняков ◽  
◽  
...  
2021 ◽  
Vol 1 (3) ◽  
pp. 76-86
Author(s):  
R.O. Maksimov ◽  
◽  
I.V. Chichekin ◽  

To determine the maximum loads acting in the rear air suspension of a truck at the early stages of design there was used computer modeling based on solving equations of dynamics of solids and implemented in the Recurdyn software. The components of the developed virtual test bench, includ-ing hinges, power connections, drive axles, a wheel-hub assembly with a wheel and a support plat-form, are considered in detail. The test bench is controlled using a mathematical model created in the environment for calculating the dynamics of rigid bodies and associated with a solid suspension model by standard software tools of the application. The test bench is controlled using a mathemati-cal model created in the environment for calculating the dynamics of rigid bodies and associated with a solid suspension model by standard software tools of the application. The use of such a test bench makes it possible to determine the loads in the hinges and power connections of the suspen-sion, to determine the mutual positions of the links for each load mode, to increase the accuracy of the calculation of loads in comparison with the flat kinematic and force calculation. The mathemati-cal model of the virtual test bench allows to carry out numerous parametric studies of the suspension without the involvement of expensive full-scale prototypes. This makes it possible at the early stages of design to determine all hazardous modes, select rational parameters of the elements, and reduce design costs. The paper shows the results of modeling the operation of a virtual test bench with an air suspen-sion in the most typical loading modes, identifying the most dangerous modes. The efficiency and adequacy of the mathematical model of the suspension was proved. Examples of determining the force in all the joints of the structure, the choice of maximum loads for design calculations when designing the air suspension of vehicle were shown.


2019 ◽  
Vol 113 ◽  
pp. 01002
Author(s):  
Alessandro Vulpio ◽  
Nicola Casari ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Alessio Suman

Biomass gasification is regarded as one of the most promising technology in the renewable energy field. The outcome of such operation, i.e. the synfuel, can be exploited in several ways, for example powering engines and turbines, and is considered more flexible than the biomass itself. For this reason, a careful analysis of the gasification performance is of paramount importance for the optimization of the process. One of the techniques that can be used for such a purpose, is the numerical analysis. CFD is indeed a tool that can be of great help in the design and study of the operation of the gasifier, allowing for an accurate prediction of the operating parameters. In this work, a downdraft gasifier is considered, and the biomass is made of wood chip. The present analysis is devoted to build the numerical model and simulate all the reactions that happen inside an actual gasifier, considering the drying of the wood chip, heating, pyrolysis, and combustion. Good match with experimental results is found, making the numerical model here presented a reliable virtual test bench where investigating the effects of variation in the working parameters.


Actuators ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 117
Author(s):  
Alejandra de la Guerra ◽  
Victor M. Jimenez-Mondragon ◽  
Lizeth Torres ◽  
Rafael Escarela-Perez ◽  
Juan C. Olivares-Galvan

This article introduces an on-line fault diagnosis (FD) system to detect and recognize open-phase faults in switched reluctance motors (SRMs). Both tasks, detection and recognition, are based on functions built with the same information but from different sources. Specifically, these functions are constructed from bus current measurement provided by a sensor and from the estimate of such a current provided by an extended Kalman filter (EKF) that performs the estimation from only rotor angular position measurements. In short, the FD system only requires two measurements for employment: bus current and angular position. In order to show its efficacy, results from numerical simulations (performed in a virtual test bench) are presented. Specifically, these simulations involve the dynamics of the SRM, including the magnetic phenomena caused by the analyzed faults. The motor dynamics were obtained with finite element simulations, which guarantee results close to the actual ones.


2021 ◽  
Vol 284 ◽  
pp. 06006
Author(s):  
Pavel Cvetkov ◽  
Elena Zhilenkova ◽  
Anton Zhilenkov

The article analyzes the approaches to the creation of the concept of a virtual test bench for testing the digital twin of the automotive industry product. Such components of the digital platform as suspension area, power plant, braking and cooling systems are being investigated. The problem of the implementation in the digital twin of such important units as the attachment points of units and assemblies on the vehicle body frame, even surface, driver dummy, the scheme of attachment of body elements, etc is studied. The importance of the implementation of such benches as platforms for assessing the indicators of the vehicle passive safety or as stand for assessing the water tightness of the vehicle body is considered. A number of results that illustrate development areas and success of the authors of the article in these areas are presented. It is shown that the digital platform can be used for certification and rating tests, assessing the comfort and visibility of the driver's cab.


Author(s):  
Grigorii M. Popov ◽  
Igor Egorov ◽  
Evgenii Marchukov ◽  
Andrei A. Volkov ◽  
Oleg V. Baturin

Abstract The paper presents the main ideas of the virtual test bench concept for rapid obtaining of the reliable characteristics of compressors based on a multi-level mathematical model with a two-step identification using data obtained from mathematical models with a high order of accuracy. One of the possible identification algorithms and the results of its successful testing are given on the example of a centrifugal compressor stage developed and tested at NASA.


2021 ◽  
Vol 19 (12) ◽  
pp. 2097-2104
Author(s):  
Jose Luis Salgado Doroteo ◽  
Jorge Hugo Calleja Gjumlich ◽  
Jesus Dario Mina Antonio
Keyword(s):  

Author(s):  
Vinod Cherian ◽  
Nader Jalili ◽  
Imtiaz Haque

This paper describes a nonlinear modeling approach for a double wishbone suspension developed to investigate the nonlinear kinematics and dynamics in the closed, spatial kinematic chain configuration of the suspension. This model is linked to a nonlinear rack and pinion steering subsystem model in order to study the steering nibble (steering wheel rotational vibrations). The suspension mechanism is idealized as a four degree-of-freedom model for a power assisted rack and pinion steering system, with suspension members considered as rigid links and the bushings idealized as linear spring-damper elements. A system of relative coordinates is used in the suspension subsystem model to minimize the number of equations that would be necessary due to the large number of geometrical and kinematic constraints. The equations of motion for the analytical subsystem models are derived symbolically using Maple and solved numerically using Matlab. The results of simulation of the model subjected to a virtual Kinematics and Compliance (K&C) test are compared with the results generated by the developed ADAMS model based on the parameters obtained from a vehicle manufacturer subjected to the same virtual test. Based on the results of the virtual K&C tests and quasi static simulation of the ADAMS model and the analytical models of the vehicle suspension subsystem, the kinematics results match ADAMS model very closely.


Sign in / Sign up

Export Citation Format

Share Document