The Concept of a Multi-Level Optimization Model of the Centrifugal Compressor Workflow

Author(s):  
Grigorii M. Popov ◽  
Igor Egorov ◽  
Evgenii Marchukov ◽  
Andrei A. Volkov ◽  
Oleg V. Baturin

Abstract The paper presents the main ideas of the virtual test bench concept for rapid obtaining of the reliable characteristics of compressors based on a multi-level mathematical model with a two-step identification using data obtained from mathematical models with a high order of accuracy. One of the possible identification algorithms and the results of its successful testing are given on the example of a centrifugal compressor stage developed and tested at NASA.

2021 ◽  
pp. 146511652199845
Author(s):  
Jeffrey Nonnemacher

Since direct elections to the European Parliament began in 1979, variations in voting behavior in European Parliament elections from national elections have raised interesting questions about political behavior. I add to a growing literature that explores turnout in European Parliament elections by focusing on the count of national elections between European Parliament elections. Through a cross-national study of elections, I find that turnout decreases in the European Parliament contest following cycles with numerous national contests. Then, using data from the European Election Study, I argue that this is the result of frequent elections decreasing turnout particularly among already low interest voters who stay home. My findings have implications for how formal rules of multi-level elections shape political behavior more generally and voter fatigue in particular.


2013 ◽  
Vol 392 ◽  
pp. 725-729 ◽  
Author(s):  
Rafael José Gomes de Oliveira ◽  
Mauro Hugo Mathias

The application of the HFRT (High-Frequency Resonance Technique), a demodulation based technique, is a technique for evaluation the condition of bearings and other components in rotating machinery. Another technique MED (Minimum Entropy Deconvolution) has been the subject of recent developments for application in condition monitoring of gear trains and roller bearings. This article demonstrates the effectiveness of the combined application of the MED technique with HFRT in order to enhance the capacity of HFRT to identify the characteristic fault frequencies of damaged bearings by increasing the signal impulsivity. All tests were done using data collected from an experimental test bench in laboratory. The Kurtosis value is used as an indicator of effectiveness of the combined technique and the results shown an increase of five times the original kurtosis value with the application of MED filter together with the HFRT.


1996 ◽  
Vol 104 (6) ◽  
pp. 2275-2286 ◽  
Author(s):  
Wusheng Zhu ◽  
Xinsheng Zhao ◽  
Youqi Tang

2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Lee Galloway ◽  
Stephen Spence ◽  
Sung In Kim ◽  
Daniel Rusch ◽  
Klemens Vogel ◽  
...  

The stable operating range of a centrifugal compressor stage of an engine turbocharger is limited at low mass flow rates by aerodynamic instabilities which can lead to the onset of rotating stall or surge. There have been many techniques employed to increase the stable operating range of centrifugal compressor stages. The literature demonstrates that there are various possibilities for adding special treatments to the nominal diffuser vane geometry, or including injection or bleed flows to modify the diffuser flow field in order to influence diffuser stability. One such treatment is the porous throat diffuser (PTD). Although the benefits of this technique have been proven in the existing literature, a comprehensive understanding of how this technique operates is not yet available. This paper uses experimental measurements from a high pressure ratio (PR) compressor stage to acquire a sound understanding of the flow features within the vaned diffuser which affect the stability of the overall compression system and investigate the stabilizing mechanism of the porous throat diffuser. The nonuniform circumferential pressure imposed by the asymmetric volute is experimentally and numerically examined to understand if this provides a preferential location for stall inception in the diffuser. The following hypothesis is confirmed: linking of the diffuser throats via the side cavity equalizes the diffuser throat pressure, thus creating a more homogeneous circumferential pressure distribution, which delays stall inception to lower flow rates. The results of the porous throat diffuser configuration are compared to a standard vaned diffuser compressor stage in terms of overall compressor performance parameters, circumferential pressure nonuniformity at various locations through the compressor stage and diffuser subcomponent analysis. The diffuser inlet region was found to be the element most influenced by the porous throat diffuser, and the stability limit is mainly governed by this element.


Author(s):  
Kiyotaka Hiradate ◽  
Hiromi Kobayashi ◽  
Takahiro Nishioka

This study experimentally and numerically investigates the effect of application of curvilinear element blades to fully-shrouded centrifugal compressor impeller on the performance of centrifugal compressor stage. Design suction flow coefficient of compressor stage investigated in this study is 0.125. The design guidelines for the curvilinear element blades which had been previously developed was applied to line element blades of a reference conventional impeller and a new centrifugal compressor impeller with curvilinear element blades was designed. Numerical calculations and performance tests of two centrifugal compressor stages with the conventional impeller and the new one were conducted to investigate the effectiveness of application of the curvilinear element blades and compare the inner flowfield in details. Despite 0.5% deterioration of the impeller efficiency, it was confirmed from the performance test results that the compressor stage with the new impeller achieved 1.7% higher stage efficiency at the design point than that with the conventional one. Moreover, it was confirmed that the compressor stage with the new impeller achieved almost the same off-design performance as that of the conventional stage. From results of the numerical calculations and the experiments, it is considered that this efficiency improvement of the new stage was achieved by suppression of the secondary flows in the impeller due to application of negative tangential lean. The suppression of the secondary flows in the impeller achieved uniformalized flow distribution at the impeller outlet and increased the static pressure recovery coefficient in the vaneless diffuser. As a result, it is thought that the total pressure loss was reduced downstream of the vaneless diffuser outlet in the new stage.


Sign in / Sign up

Export Citation Format

Share Document