scholarly journals ​Nanofertilizers for Enhancing Nutrient use Efficiency and Crop Productivity in Vegetable Crops of Gujarat

Author(s):  
Devi Dayal ◽  
N.S. Patel ◽  
J.R. Khoja

Background: India is a second largest producer of vegetables after China. Fruits and vegetables are essential parts of our diets and vegetables recommended highest by ICMR. Therefore, the vegetables require extra emphasis to improve production and productivity of it to feed the second largest population in the world. Methods: Indian Farmers Fertiliser Cooperative Ltd. (IFFCO) has introduced its nanotechnology-based products i.e., Nano-N, Nano-Zn and Nano-Cu for initial testing on 11 important vegetable crops grown during winter season in Gujarat with 5 treatment combinations. Result: We tested 5 treatment combinations among which treatment T5 i.e., 50% farmer fertilizer practices plus 1 spray of Nano-N, 1 spray of Nano-Zn and 1 spray of Nano-Cu give 5.34% higher return then all there treatments in all crops. Which conclude that application of nano-fertilizers through foliar spray significantly increase crop yield over control or without application of nano-fertilzer due to its higher Nutrient Use Efficiency (NUE). So it was recommended to use farmers fertilizers practices (FFP) 50% N, 1 spray of Nano-N, 1 spray of Nano-Zn and 1 spray of Nano-Cu to get more economic yield.

2020 ◽  
Vol 22 (4) ◽  
pp. 324-335
Author(s):  
YOGENDRA KUMAR

The results of 600 on-farm trials with 8 crops conducted during winter season in different districts of Rajasthan have proved that the quantity of urea being applied by the farmers to supply nitrogen to the crops can be successfully reduced to half. The yields obtained with 50% less nitrogen plus 2 sprays of nano-nitrogen in standing crops gave yields higher than that applied in most of the 8 crops tested in these trials. Apart from this, effect of the Nano-Zn and Nano-Cu was also evaluated. As the deficiencies of these micronutrients were not universal like nitrogen, the significant responses to these nanofertilizers depended on the magnitude of deficiency of specific micronutrients and the nature of the crops.These results clearly establish that with application of nanofertilizers, the nutrient use efficiency can be significantly enhanced as revealed by 50 per cent saving of urea through 2 sprays of Nano N.Nanofertilizers are considered as a novel approach towards saving of nutrients, in particular nitrogen, and protecting the environment.This paper describes the results of 600 on-farm trials conducted on 8 crops grown during winter season of 2019-20.


2018 ◽  
Vol 102 (4) ◽  
pp. 8-10
Author(s):  
Fernando García ◽  
Andrés Grasso ◽  
María González Sanjuan ◽  
Adrián Correndo ◽  
Fernando Salvagiotti

Trends over the past 25 years indicate that Argentina’s growth in its grain crop productivity has largely been supported by the depletion of the extensive fertility of its Pampean soils. Long-term research provides insight into sustainable nutrient management strategies ready for wide-scale adoption.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2396
Author(s):  
Muhammad Yaseen ◽  
Adeel Ahmad ◽  
Muhammad Naveed ◽  
Muhammad Asif Ali ◽  
Syed Shahid Hussain Shah ◽  
...  

Nitrogen (N) is an essential plant nutrient, therefore, N-deficient soils affect plant growth and development. The excessive and unwise application of N fertilizers result in nutrient losses and lower nutrient use efficiency that leads to the low crop productivity. Ammonia volatilization causes a major loss after N fertilization that causes environmental pollution. This experiment was conducted to evaluate the effectiveness of coating and uncoating N fertilizer in enhancing yield and nutrient-use efficiency with reduced ammonia emissions. The recommended rate of nitrogen and phosphorus, urea and di-ammonium phosphate (DAP) fertilizers were coated manually with 1% polymer solution. DAP (coated/uncoated) and potassium were applied at the time of sowing as subsurface application. While urea (coated/uncoated) was applied as surface and subsurface application. Results showed that nutrient use efficiencies of wheat were found to be maximum with the subsurface application of coated N fertilizer which increased nutrient-use efficiency by 44.57 (N), 44.56 (P) and 44.53% (K) higher than the surface application of uncoated N fertilizer. Ammonia emissions were found the lowest with subsurface-applied coated N fertilizer. Thus, coated fertilizer applied via subsurface was found the best technique to overcome the ammonia volatilization with an improvement in the yield and nutrient-use efficiency of wheat.


2020 ◽  
Author(s):  
A. Karthik ◽  
M. Uma Maheswari

Food security is one of the major concerns for all developing countries of the world. Even though we had attained the highest food production with the use of new technologies, we may not able to feed the burgeoning population adequately in coming years due to stagnant crop productivity. Natural source of nutrients like organic manures and external source of nutrients, viz. fertilizers, are considered as the two eyes in plant nutrient management. Nutrient use efficiency of fertilizer is very low due to numerous pathways of losses such as leaching, denitrification, microbial immobilization, fixation and runoff. It has been estimated that around 40-70% of nitrogen, 80-90% of phosphorus, 50-70% of potassium and more than 95% of micronutrient content of applied fertilizers are lost in to the environment and results in pollution (Kanjana, 2017). Smart fertilizers like slow and controlled release fertilizers, nanofertilizers and bioformulation fertilizers are the new technologies to enhance the nutrient use efficiency their by improving crop yield in sustainable manner. The use of slow and controlled release fertilizers increase nutrient use efficiency, minimize the risks like leaf burning, water contamination and eutrophication. Nano-fertilizers are the nano-particles-based fertilizers, where supply of the nutrients is made precisely for maximum plant growth, have higher use efficiency, exploiting plant unavailable nutrients in the rhizosphere and can be delivered on real time basis into the rhizosphere or by foliar spray (Priyanka Solangi et al., 2015). The small size, high specific surface area and reactivity of nano fertilizers increase the solubility, diffusion and availability of nutrients to plants and enhance crop productivity. Bioformulation is microbial preparations containing specific beneficial microorganisms which are capable of fixing or solubilizing or mobilizing plant nutrients for promoting plant growth and crop yield. Smart fertilizers are the better option for the farmers to increase their crop yield with low input cost in sustainable way without degrading natural environment.


2012 ◽  
Vol 64 (5) ◽  
pp. 1181-1192 ◽  
Author(s):  
Jianbo Shen ◽  
Chunjian Li ◽  
Guohua Mi ◽  
Long Li ◽  
Lixing Yuan ◽  
...  

2021 ◽  
Author(s):  
S R Salakinkop ◽  
Siddarta Hulamani

Abstract Maize area is rapidly spreading in south India in response to rising demand from the poultry and fish feed industries. The planting of maize during winter season is necessary to increase the total area and production of maize. The present investigation encompassing different sowing windows with different fertility levels revealed that significantly higher winter maize productivity was achieved from first and second week of October planting along with application of 200 % RDF(recommended dose of fertilizer) followed by 150 % RDF. Planting of winter maize during first week of October recorded significantly higher grain yield (8786 kg ha-1) and stover yield (1220 kg ha-1) and was found on par with sowing during second week of October. Among fertility levels, significantly higher grain yield (8320 kg ha -1) and stover yield (1195 kg ha-1) were recorded with application of 200 % RDF and was found on par with application of 150 % RDF. Similarly higher dry matter production, more days for physiological maturity, higher accumulation of growing degree days, photo thermal units and heliothermal units were recorded from crop planted during first and second week of October along with application of either 200 % or 150 % RDF. Further higher nutrient use efficiency was recorded from first and second week October planted crop along with lower fertility level (100 % RDF). Similarly significantly higher output energy, net energy and specific energy were higher from crop planted during first week of planting along with application of 200 % RDF. Also it recorded higher net returns and gross returns Whereas, energy use efficiency and energy productivity were higher with planting during first week of October along with application of 100 % RDF.


2016 ◽  
Vol 2 (2) ◽  
pp. 88 ◽  
Author(s):  
Archana P. Kale ◽  
Satyavikas N. Gawade

A field experiment was conducted at M/s.Rashtriya Chemicals and Fertilizers, Ltd., Mumbai, India, (RCF) experimental farm to evaluate the effect of ZnO Nanoparticles (ZnO NP) in combination with N: P: K (15: 15:15) complex fertilizer “Suphala” of RCF Ltd. on growth attributes of brinjal (Solanum melongena L) as well as nutrient use efficiency. The experiment was carried out in randomised block design with three replications. The first treatment (T-1), comprised of recommended dose of fertilizer (RDF), N: P: K (50:50:50), applied at the time of transplantation. The second treatment (T-2) was conducted with RDF in combination @ 2kg ZnSO4 (bulk)/ha. The third treatment (T-3) was added, N: P: K (12.5; 12.5; 12.5) in combination to ZnO NP @ 4500mg/ha. The forth treatment (T-C) was without any fertilizer. All treatments were given appropriate quantity of nitrogen per hectare as urea at the 30th day of transplantation. The combination N: P: K (12.5; 12.5; 12.5) and ZnO NP @ 4500mg/ha yielded 91% and 45.3% higher brinjal yield and biomass respectively than the treatment with only RDF. It was also observed that 38% and 21% higher yield and biomass respectively were recorded in the treatment where combination of RDF with ZnSO4 (bulk) over RDF was used alone. The results of field trials reveal that, there was synergistic effect of ZnO NP @ 4500mg per hectare with N: P: K complex fertilizer on growth attributes of brinjal as well as nutrient use efficiency.


Sign in / Sign up

Export Citation Format

Share Document