Establishment and Preliminary Application of Multiplex Fluorescent Quantitative PCR for Simultaneous Detection of BVDV, BRV and BCV

Author(s):  
Liyun Chang ◽  
Zhiyong Liu ◽  
Yuelan Zhao ◽  
Yan Li ◽  
Jianhua Qin

Background: In this study, we aimed to establish a multiplex fluorescence quantitative polymerase chain reaction (PCR) method for the identification and detection of bovine viral diarrhea virus (BVDV), bovine rotavirus (BRV) and bovine coronavirus (BCV). Methods: Based on the highly conserved sequences of BVDV E2 gene, BRV VP6 gene and BCV N gene in GenBank, specific primers were designed to amplify the target gene fragments of each virus and the reaction conditions and system were optimized. Multiple fluorescence quantitative methods were established by fluorescence quantitative PCR. Result: The minimum detection limits of plasmid standards for BVDV, BRV and BCV by multiplex fluorescence quantitative PCR were 1.19×102 copies/μL, 3.89×101 copies/μL and 3.74×101 copies/μL, respectively. The lowest sensitivity of the established method was 100 times higher than that of conventional PCR and had high sensitivity. Furthermore, BVDV, BRV and BCV were amplified specifically, with no cross-reactivity with Escherichia coli (E. coli), Salmonella and infectious bovine rhinotracheitis virus (IBRV). The intra-and inter-group coefficients of variation were less than 1%, showing good assay repeatability. Using the established method and ordinary multiplex PCR to simultaneously detect 150 clinical diarrheal disease material samples, the coincidence rate of samples with mixed infection of the three viruses was 83.3%. The results showed that the multiplex fluorescent quantitative PCR detection method established in this study provides a rapid, sensitive and specific technique for clinical diagnosis and epidemiological monitoring of BVDV, BRV and BCV.

2019 ◽  
Vol 19 (2) ◽  
pp. 383-401
Author(s):  
Lei Cheng ◽  
Min Xiang ◽  
Xiuzhong Hu ◽  
Jie Yu ◽  
Yu Xia ◽  
...  

AbstractEarly diagnosis of pregnancy is important in livestock production, but there is no reliable technology used for pregnancy diagnosis within the first three weeks after insemination. During early pregnancy, the expression of interferon-stimulating genes (ISGs) in peripheral blood leukocytes (PBL) is significantly increased. However, due to different strains, detection sample types, detection methods, threshold value, etc. the specific effectiveness of early pregnancy diagnosis using ISGs is worth further study. The purpose of this study was to test interferon-stimulated protein 15 (ISG15), 2'–5'-oligoadenylate synthetase 1 (OAS1) and radical S-adenosyl methionine domain containing 2 (RSAD2) for early pregnancy diagnosis in dairy cows. The expression of ISG15, OAS1, and RSAD2 in PBL of pregnant and non-pregnant heifers on days 0, 14, 18, 21 and 28 after artificial insemination (AI) was detected by fluorescence quantitative polymerase chain reaction (PCR). The sensitivity and specificity of the pregnancy diagnosis was analyzed using expression of these three genes separately or in combination by receiver operating characteristic curve. The combination with the highest accuracy used probe primers and duplex fluorescence quantitative PCR. The single quantitative PCR results showed that expression of ISG15, OAS1 and RSAD2 on day 18 after AI was significantly higher in pregnant than in non-pregnant cows. When these three genes were used separately, or in combination, for early pregnancy diagnosis, the sensitivity for the RSAD2 gene was 100%, and the combination of ISG15 with RSAD2 was 94.7%. The duplex quantitative PCR showed that, although the sensitivity of ISG15 alone was 100%, its specificity was only 88.2% (cut-off value 1.402). The sensitivity of RSAD2 alone was 89.5%, and the specificity was 88.2%; however, when the two genes were used in combination, the sensitivity, specificity and diagnostic cut-off value were consistent with the results of single quantitative PCR. These results indicated that a duplex quantitative PCR assay system for early pregnancy diagnosis in cows using ISG15 and RSAD2 was established. Simultaneous detection of expression of ISG15 and RSAD2 by duplex quantitative PCR can effectively improve the diagnostic accuracy for dairy cows.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chukwunonso Onyilagha ◽  
Henna Mistry ◽  
Peter Marszal ◽  
Mathieu Pinette ◽  
Darwyn Kobasa ◽  
...  

AbstractThe coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), calls for prompt and accurate diagnosis and rapid turnaround time for test results to limit transmission. Here, we evaluated two independent molecular assays, the Biomeme SARS-CoV-2 test, and the Precision Biomonitoring TripleLock SARS-CoV-2 test on a field-deployable point-of-care real-time PCR instrument, Franklin three9, in combination with Biomeme M1 Sample Prep Cartridge Kit for RNA 2.0 (M1) manual extraction system for rapid, specific, and sensitive detection of SARS-COV-2 in cell culture, human, and animal clinical samples. The Biomeme SARS-CoV-2 assay, which simultaneously detects two viral targets, the orf1ab and S genes, and the Precision Biomonitoring TripleLock SARS-CoV-2 assay that targets the 5′ untranslated region (5′ UTR) and the envelope (E) gene of SARS-CoV-2 were highly sensitive and detected as low as 15 SARS-CoV-2 genome copies per reaction. In addition, the two assays were specific and showed no cross-reactivity with Middle Eastern respiratory syndrome coronavirus (MERS-CoV), infectious bronchitis virus (IBV), porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis (TGE) virus, and other common human respiratory viruses and bacterial pathogens. Also, both assays were highly reproducible across different operators and instruments. When used to test animal samples, both assays equally detected SARS-CoV-2 genetic materials in the swabs from SARS-CoV-2-infected hamsters. The M1 lysis buffer completely inactivated SARS-CoV-2 within 10 min at room temperature enabling safe handling of clinical samples. Collectively, these results show that the Biomeme and Precision Biomonitoring TripleLock SARS-CoV-2 mobile testing platforms could reliably and promptly detect SARS-CoV-2 in both human and animal clinical samples in approximately an hour and can be used in remote areas or health care settings not traditionally serviced by a microbiology laboratory.


2008 ◽  
Vol 71 (10) ◽  
pp. 2094-2099 ◽  
Author(s):  
YU-CHANG CHANG ◽  
JAN-YI WANG ◽  
AMMAIYAPPAN SELVAM ◽  
SHU-CHEN KAO ◽  
SHANG-SHYNG YANG ◽  
...  

Aeromonads possess an array of virulence factors and are causative agents of a number of human infections. Among them, genes of one cytotoxic (Act) and two cytotonic (Alt, Ast) enterotoxins are implicated in a human diarrheal disease. A rapid, specific, simultaneous detection of these enterotoxin genes in suspected food poisoning samples is not yet reported. Hence, a multiplex PCR assay was designed to amplify the cytotoxic (act), heat-labile cytotonic (alt), and heat-stable cytotonic (ast) enterotoxin genes of aeromonads. The PCR assay was tested with 133 Aeromonas spp. isolated from suspect food poisoning samples and retail samples of poultry and fish from wet markets in and around Taipei, Northern Taiwan. The Aeromonas spp. isolates were divided into six genotypes based on absence or presence of one or more enterotoxin genes. Of these 133 isolates, Aeromonas caviae (52.5%) and Aeromonas hydrophila (43.4%) were the most frequently isolated species from food poisoning samples and retail samples, respectively. Among the species, A. hydrophila had a significantly higher proportion for harboring three enterotoxin genes than had the others, whereas Aeromonas encheleia, considered a nonpathogen, was found harboring three enterotoxin genes. The multiplex PCR assays are rapid and specific, and provide a useful tool for the detection and genotyping of enterotoxin genes of aeromonads.


2021 ◽  
Author(s):  
Wei Li ◽  
Wei-wei Li ◽  
Lin Li ◽  
Lin He ◽  
Wen-qing Xiang ◽  
...  

Abstract We developed a RT-PCR combined with melting curve analysis (RRCMC) method for simultaneous detection of rotavirus A, B, C, norovirus GI and GII, adenovirus, astrovirus and sapovirus. Stool samples were collected from 160 children with acute diarrhea and tested by RRCMC assay. A total of 71 patients were tested positive with norovirus, adenovirus or rotavirus. The RRCMC assay has high specificity. There is no internal cross-reaction through the 8 diarrhea viruses and no cross-reaction of other commonly intestinal pathogens and human genome. The detection limit was ranging from 1×102 to 1×105 copies/ml for each diarrhea virus. In conclusion, the RRCMC method is a suitable rapid clinical test for infectious viruses, with the advantages of high-throughput, low cost, high sensitivity and specificity.


2020 ◽  
Vol 240 ◽  
pp. 108511 ◽  
Author(s):  
Xian-Wei Wang ◽  
Mi Wang ◽  
Jing Zhan ◽  
Qian-Yu Liu ◽  
Lin-lin Fang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document