Genetic variability of sheep populations of Saudi Arabia using microsatellite markers

Author(s):  
Ahmed H. Mahmoud ◽  
Faisal M. Abou Tarboush ◽  
Ahmed Rady ◽  
Khalid M. Al-Anaz Mohammad Abul Farah ◽  
Osama B. Mohammed

The present study was conducted to know the genetic diversity of three Saudi sheep populations; Naeimi (NM), Herri (H) and Najdi (NJ). Genomic DNA was extracted from 156 animals of sheep comprising 47 Naeimi, 47 Herri and 62 Najdi breeds using 18 microsatellite markers. A total of 212 alleles were generated with a mean value of 11.80 alleles per locus, with a range of observed and expected heterozygosity of 0.505 to 0.875 and 0.595 to 0.854, respectively. Eleven of the microsatellites loci studied in NM, three loci in H and fifteen loci in NJ were observed to be deviated from Hardy-Weinberg equilibrium. The fixation genetic indices (Fst) among the three sheep populations were very low, ranging from 0.017 (between NJ and H) to 0.033 (between NJ and NM), indicating low population differentiation among the three sheep populations studied. The present study showed that the microsatellite markers are powerful tool in determining genetic diversity among sheep populations.

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1067
Author(s):  
Emel Özkan Ünal ◽  
Raziye Işık ◽  
Ayşe Şen ◽  
Elif Geyik Kuş ◽  
Mehmet İhsan Soysal

The present study was aimed to investigate the genetic diversity among 17 Turkish water buffalo populations. A total of 837 individuals from 17 provincial populations were genotyped, using 20 microsatellites markers. The microsatellite markers analyzed were highly polymorphic with a mean number of alleles of (7.28) ranging from 6 (ILSTS005) to 17 (ETH003). The mean observed and expected heterozygosity values across all polymorphic loci in all studied buffalo populations were 0.61 and 0.70, respectively. Observed heterozygosity varied from 0.55 (Bursa (BUR)) to 0.70 (Muş (MUS)). It was lower than expected heterozygosity in most of the populations indicating a deviation from Hardy–Weinberg equilibrium. The overall value for the polymorphic information content of noted microsatellite loci was 0.655, indicating their suitability for genetic diversity analysis in buffalo. The mean FIS value was 0.091 and all loci were observed significantly deviated from Hardy–Weinberg Equilibrium (HWE), most likely based on non-random breeding. The 17 buffalo populations were genetically less diverse as indicated by a small mean FST value (0.032 ± 0.018). The analysis of molecular variance (AMOVA) analysis indicated that about 2% of the total genetic diversity was clarified by population distinctions and 88 percent corresponded to differences among individuals. The information produced by this study can be used to establish a base of national conservation and breeding strategy of water buffalo population in Turkey.


Author(s):  
Workia Ahmed ◽  
Tileye Feyissa ◽  
Kassahun Tesfaye ◽  
Sumaira Farrakh

Abstract Background Date palm tree (Phoenix dactylifera L.) is a perennial monocotyledonous plant belonging to the Arecaceae family, a special plant with extraordinary nature that gives eminent contributions in agricultural sustainability and huge socio-economic value in many countries of the world including Ethiopia. Evaluation of genetic diversity across date palms at DNA level is very important for breeding and conservation. The result of this study could help to design for genetic improvement and develop germplasm introduction programmes of date palms mainly in Ethiopia. Results In this study, 124 date palm genotypes were collected, and 10 polymorphic microsatellite markers were used. Among 10 microsatellites, MPdCIR085 and MPdCIR093 loci showed the highest value of observed and expected heterozygosity, maximum number of alleles, and highest polymorphic information content values. A total of 112 number of alleles were found, and the mean number of major allele frequency was 0.26, with numbers ranging from 0.155 (MPdCIR085) to 0.374 (MPdCIR016); effective number of alleles with a mean value of 6.61, private alleles ranged from 0.0 to 0.65; observed heterozygosity ranged from 0.355 to 0.726; expected heterozygosity varied from 0.669 to 0.906, polymorphic information content with a mean value of 0.809; fixation index individuals relative to subpopulations ranged from 0.028 for locus MPdCIR032 to 0.548 for locus MPdCIR025, while subpopulations relative to total population value ranged from − 0.007 (MPdCIR070) to 0.891 (MPdCIR015). All nine accesstions, neighbour-joining clustering analysis, based on dissimilarity coefficient values were grouped into five major categories; in population STRUCTURE analysis at highest K value, three groups were formed, whereas DAPC separated date palm genotypes into eight clusters using the first two linear discriminants. Principal coordinate analysis was explained, with a 17.33% total of variation in all populations. Generally, the result of this study revealed the presence of allele variations and high heterozygosity (> 0.7) in date palm genotypes. Conclusions Microsatellites (SSR) are one of the most preferable molecular markers for the study of genetic diversity and population structure of plants. In this study, we found the presence of genetic variations of date palm genotypes in Ethiopia; therefore, these genetic variations of date palms is important for crop improvement and conservation programmes; also, it will be used as sources of information to national and international genbanks.


Author(s):  
Weiwei Ni ◽  
An Jiang ◽  
Jian Zhang ◽  
Guangxin E ◽  
Yongfu Huang

Cattle are the main source of meat in Chongqing. This study investigated the genetic diversity of cattle native to Chongqing and 4 introduced breeds. A total of 96 individuals from 5 breeds were genotyped using six microsatellite markers. Five markers were highly polymorphic within the breed populations, and one marker had moderate levels of polymorphism. Heterozygosity ranged from 0.5379±0.0434 in Simmental to 0.6667±0.0559 in Charolais. The heterozygosity deficit was significant in all populations analyzed compared with the expected level of heterozygosity. In addition, two microsatellite markers (TGLA53 and OarFCB20) deviated from Hardy-Weinberg equilibrium across populations (except in cattle native to Chongqing). The mean number of alleles ranged from 6.00±2.37 in Angus to 7.17±2.14 in Droughtmaster across six markers. The coefficient of inbreeding ranged from 0.0017 in Simmental and Droughtmaster to 0.0367 in Angus. Pairwise difference analyses revealed that Simmental and Droughtmaster were the most differentiated (FST= 0.06861) from each other, whereas cattle native to Chongqing and Charolais were the least differentiated (FST= 0.00557). In summary, this study showed that cattle native to Chongqing and 4 introduced breeds were genetically well protected in Chongqing, and information from this study would be helpful for guiding hybridization and genetic improvements in the future.


2019 ◽  
Vol 62 (1) ◽  
pp. 181-187 ◽  
Author(s):  
Lulan Zeng ◽  
Ruihua Dang ◽  
Hong Dong ◽  
Fangyu Li ◽  
Hong Chen ◽  
...  

Abstract. Donkeys are one important livestock in China because of their nourishment and medical values. To investigate the genetic diversity and phylogenetic relationships of Chinese donkey breeds, a panel of 25 fluorescently labeled microsatellite markers was applied to genotype 504 animals from 12 Chinese donkey breeds. A total of 226 alleles were detected, and the expected heterozygosity ranged from 0.6315 (Guanzhong) to 0.6999 (Jiami). The mean value of the polymorphism information content, observed number of alleles, and expected number of alleles for all the tested Chinese donkeys were 0.6600, 6.890, and 3.700, respectively, suggesting that Chinese indigenous donkeys have relatively abundant genetic diversity. Although there were abundant genetic variations found, the genetic differentiation between the Chinese donkey breeds was relatively low, which displayed only 5.99 % of the total genetic variance among different breeds. The principal coordinates analysis clearly splits 12 donkey breeds into two major groups. The first group included Xiji, Xinjiang, Liangzhou, Kulun, and Guanzhong donkey breeds. In the other group, Gunsha, Dezhou, Biyang, Taihang, Jiami, Qingyang, and Qinghai donkeys were clustered together. This grouping pattern was further supported by structure analysis and neighbor-joining tree analysis. Furthermore, genetic relationships between different donkey breeds identified in this study were corresponded to their geographic distribution and breeding history. Our results provide comprehensive and precise baseline information for further research on preservation and utilization of Chinese domestic donkeys.


2018 ◽  
Vol 40 (1) ◽  
pp. 35218 ◽  
Author(s):  
Amanda Gonçalves Guimarães ◽  
Antônio Teixeira do Amaral Júnior ◽  
Janeo Eustáquio de Almeida Filho ◽  
Guilherme Ferreira Pena ◽  
Cássio Vittorazzi ◽  
...  

The success of any recurrent selection program depends on the genetic variability of the evaluated population, which is used to refer to the diversity of existing alleles at many genetic loci. Thus, the goal of the present study was to investigate the impact of recurrent selection across nine cycles of a UENF-14 popcorn population through the analysis of genetic diversity and structure using microsatellite markers (EST-SSRs). Genomic DNA was extracted from young leaves of 25 individuals from each cycle (C0, C1 C2, C3, C4, C5, C6, C7, and C8), totaling 225 samples from the UENF-14 population. Fifty EST-SSR markers were used for the analysis of genetic diversity across the recurrent selection cycles, 16 of which were polymorphic. Thirty-four alleles were detected, with an average of 2.13 alleles per locus. Throughout all the recurrent selection cycles, there was a reduction in heterozygosity and an increase in inbreeding. The population structure showed a sharing of alleles, inferring that some may be directly related to the main selection characteristics.


2014 ◽  
Vol 13 (3) ◽  
pp. 286-289 ◽  
Author(s):  
Supajit Sraphet ◽  
Anuwat Saengsri ◽  
Duncan R. Smith ◽  
Kanokporn Triwitayakorn

Microsatellite markers specific to Cheirostylis yunnanensis Rolfe were developed using an enriched genomic DNA library technique. The library was constructed using (AG)20 and (CAG)20 oligonucleotide repeats. A total of 48 primer pairs were designed and tested with 48 C. yunnanensis Rolfe samples, resulting in 11 polymorphic loci. The number of alleles per locus ranged from 2 to 12, with an average of six alleles. The observed and expected heterozygosity ranged from 0.0426 to 0.8085 and 0.0421 to 0.9078, respectively. Of the 11 polymorphic loci, three showed a significant deviation from Hardy–Weinberg equilibrium and one exhibited linkage disequilibrium. Cross-species amplification was tested with five samples of Cheirostylis of unknown species resulting in eight loci that could be amplified, with the number of alleles ranging from one to two. The microsatellite markers developed in this study will be useful for the genetic analysis of C. yunnanensis in order to differentiate species as well as to establish a conservation plan for this species.


2013 ◽  
Vol 4 (3) ◽  
pp. 276-282
Author(s):  
Ednaldo da Silva Filho ◽  
Yasmin Martins dos Santos ◽  
Yvana Melyssa Mandú Margarido ◽  
Telmo José Mendes ◽  
Luiz Marcelo de Lima Pinheiro ◽  
...  

Bovine production plays economic importance in Brazil and Guzerat and Senepol breeds are producer of meat. It was aimed to analyze the genetic variability of Guzerat and Senepol breeds by microsatellite markers. The breeds were collected and genotyped for ten microsatellite loci by automatic sequencer and statistically analysed. A total of 53 alleles were observed being the average number was 5.3 in both breeds. The effective numbers of alleles were 3.36 for Guzerat and 3.11 for Senepol cattle. The Shannon indexes were 1.36 for Guzerat and 1.26 for Senepol cattle. The expected heterozigosity were 0.71 and PIC values were 0.64 in both breeds. The FIS were 0.01 and 0.11 for Guzerat and Senepol breeds, respectively and Hardy-Weinberg equilibrium were P>0.05 for Guzerat and P<0.05 for Senepol cattle. The combined discrimination powers were 0.99 in both breeds and combined exclusion powers (PE1) were 0.99 in both breeds and combined exclusion powers (PE2) were 0.96 and 0.95 for Guzerat and Senepol breeds espectively. There is genetic variability in both breed, but there are evidences of inbreeding enabling genetic drift and should be necessary to use major number of microsatellite loci to analyze with high efficiency the exclusion power (PE2).


2017 ◽  
Vol 61 (4) ◽  
pp. 535-542 ◽  
Author(s):  
Tanveer Hussain ◽  
Masroor Ellahi Babar ◽  
Akhtar Ali ◽  
Asif Nadeem ◽  
Zia Ur Rehman ◽  
...  

AbstractIntroduction: Eight microsatellite loci were used to define genetic diversity among five native water buffalo breeds in Pakistan.Material and Methods: Blood samples (10 mL) from 25 buffaloes of each of the Nili, Ravi, Nili-Ravi, Kundhi, and Azi-Kheli breeds were collected aseptically from the jugular vein into 50 ml Falcon tubes containing 200 μl of 0.5 M EDTA. The phenol-chloroform method was used to extract DNA and the regions were amplified for microsatellite analysis. The eight microsatellite markers ETH10, INRA005, ILSTS029, ILSTS033, ILSTS049, ILSTS052, ETH225, and CSSM66 were analysed.Results: The effective number of alleles across all loci was as usual lower than the observed values with a mean value of 2.52 alleles per locus. The overall allele frequency varied from 0.0041 for alleles B, I, and J over respective loci ILSTS052, INRA005, and ILSTS029 to 0.80 for allele H over locus ILSTS029. The average observed and expected heterozygosity values across all polymorphic loci in all studied buffalo breeds were 0.43 and 0.53, respectively. The overall value for polymorphic information content of considered microsatellite markers was 0.53, suggesting their appropriateness for genetic diversity analysis in buffalo. The mean Fis value was 0.13 and all loci except ILSTS049 were found significantly deviated from HWE, most likely due to non-random breeding. The five buffalo populations were genetically less diverse as indicated by a small mean Fst value (0.07). The average gene flow (Nm) indicative for population migration was calculated as 3.31. Nei’s original measures of genetic distance (Ds) revealed ancient divergence of the Nili and Azi-Kheli breeds (Ds = 0.1747) and recent divergence of the Nili and Ravi breeds (Ds = 0.0374).Conclusion: These estimates of genetic diversity were seen to coincide with phenotypic differentiation among the studied buffalo breeds. The present study reports the first microsatellite marker-based genetic diversity analysis in Pakistani buffalo breeds, and might facilitate similar studies in other livestock breeds of Pakistan.


2021 ◽  
Vol 42 (2) ◽  
pp. 757-768
Author(s):  
Angela Maria Urrea Rojas ◽  
◽  
Felipe Pinheiro de Souza ◽  
Ed Christian Suzuki de Lima ◽  
Claudete de Fátima Ruas ◽  
...  

The formation of fish breeding stocks for fish farming or conservation programs is commonly carried out from the capture of fish in natural environments. Information on the geographic and genetic origin of these stocks is important to guide actions that allow correct management in captivity and, when lost, harm production and genetic conservation. In this sense, the objective of this study was to evaluate the genetic diversity and origin of two breeding stocks of matrinxã, Brycon amazonicus (INPA, Amazonas - INPA and Nova Motum, Mato Grosso - NM). A total of 68 caudal fin samples were collected, including 33 INPA samples and 35 NM samples. Twenty pairs of microsatellite primers were tested, but only seven primers showed satisfactory amplification, amplifying 41 alleles ranging from 187-318 bp. The polymorphic information content ranged from 0.135 (Borg25) to 0.782 (Bh6). Exclusive alleles were observed for both populations (INPA: 04 and NM: 18). Allelic richness results revealed that there was increased loss of genetic variation in NM, indicating a lower evolutionary potential of this stock. The average values of the observed heterozygosity corroborated this statement; however, there were high values for INPA (0.545) and NM (0.475), signifying an adequate genetic variability. An imbalance was found in the Hardy-Weinberg equilibrium at the Borg59 locus in INPA (P < 0.05), possibly due to the effect of null alleles, but was attributed to a founder effect. For NM, an imbalance in the Hardy-Weinberg equilibrium was observed at loci BoM13 and Bh6, which together with the results of the mean inbreeding coefficient values demonstrated the presence of genetic drift. The analysis of molecular variance showed greater variation within populations than between them, and was confirmed by the genetic differentiation value (0.086 - moderate genetic differentiation) and by the distance and genetic identity values (0.273 and 0.761, respectively). Bayesian analysis designated a value of K = 2, with the presence of structuring for NM and INPA; however, with correlated allelic frequencies, confirming a common origin. This origin was corroborated by the presence of gene flow through the number of migrants (5.691). Based on these results, there was a moderate genetic variability for INPA and NM and their common origin was confirmed. Recommendations are also included to minimize the probability of inbreeding processes or genetic drift in the studied stocks.


2021 ◽  
Vol 42 (1) ◽  
pp. 33-39
Author(s):  
A. Sabry ◽  
◽  
S. Ramadan ◽  
M.M. Hassan ◽  
A.A. Mohamed ◽  
...  

Aim: To assess genetic diversity of two chicken ecotypes from Egypt and Saudi Arabia and compare these ecotypes to six local Egyptian and two exotic pure chicken breeds using 14 microsatellite markers. Methodology: Dataset consisted of two subsets. First subset represented two ecotypes from Saudi Arabia and Egypt. Second dataset consisted birds six Egyptian native chicken strains: Fayoumi (FAY), Dandarawy (DAN), Baladi (BAL), Sinai (Sini), El-Salam (Els) and Golden Montazah (GG), and two commercial strains: White Leghorn (WL) and Rhode Island Red (RIR). fourteen microsatellites markers were utilized to assess DNA polymorphism. Data analyses of the results were carried out using R statistical environment. Results: The obtained results indicated that number of alleles per locus averaged 11.4 ± 5.0. Polymorphic information content was informative (> 50%) for the local breeds, but not for two ecotypes. The observed and expected heterozygosity averaged 0.46 and 0.75, both ecotypes had the lowest estimates. All breeds showed significant deviation from Hardy–Weinberg equilibrium expectation. The average population differentiation index (FST) was 0.143, overall heterozygosity deficiency (FIT) was 0.156, and global inbreeding of individuals within breeds (FIS) was 0.319. Interpretation: This study revealed that both Egyptian and Saudi ecotypes have an endangered status. Lower genetic distances and lower FST values were reported for the Egyptian indigenous breeds. Phylogenetic and principle components showed that both ecotypes were genetically closer to each other when compared with other breeds. It also showed that the Dandarawy native Egyptian chicken breed was genetically the closest breed to both the Egyptian and Saudi ecotypes. Key words: Chicken, Ecotypes, Genetic diversity, Microsatellites, Phylogenetics


Sign in / Sign up

Export Citation Format

Share Document