Evaluation of essential oil of Cymbopogon distans and Cinnamomum tamala against plant pathogenic fungi

Author(s):  
Gaurav Naik ◽  
Ujjwal Bhandari ◽  
Garima Gwari ◽  
Hema Lohani

Resistance to conventional fungicides causes the poor disease control of agriculture plant essential oils have a great potential as novel fungicide sources for controlling pathogenic fungi. In this study antifungal activity of the essential oil of Cymbopogon distans and Cinnamomum tamala were evaluated in vitro against ten plants pathogenic fungal activity was evaluated with three replicates. The result showed C. distans and C. tamala essential oil with maximum zone of inhibition against Fusarium sp. (12.53 ± 0.97 mm) and P. aurantiogriseum (12.06 ± 0.52 mm) while minimum activity was seen against R. solani (6.83 ± 0.41, 6.16 ± 0.16 mm) zone of inhibition respectively. The highest efficacy was observed for C.distans essential oil where the MIC values 0.625 mg/ ml against A. flavus and Pythium sp. So, plant essential oils have the potential to replace the synthetic fungicides in the management of postharvest diseases of fruits and vegetables.

2002 ◽  
Vol 57 (3-4) ◽  
pp. 287-290 ◽  
Author(s):  
Prokopios Magiatis ◽  
Alexios-Leandros Skaltsounis ◽  
Ioanna Chinou ◽  
Serkos A. Haroutounian

The chemical composition of the essential oils of Achillea holosericea, Achillea taygetea, Achillea fraasii was determined by GC/MS analysis. Among the ninety-five assayed constituents, camphor, borneol and 1,8-cineol were found to be the major components. The in-vitro antimicrobial activity of these essential oils was evaluated against six bacteria indicating that the first is totally inactive, while the other two possess moderate to strong activities mainly against the Gram negative strains. The essential oil of A. fraasii was also active against the tested pathogenic fungi


Planta Medica ◽  
2018 ◽  
Vol 84 (18) ◽  
pp. 1355-1362 ◽  
Author(s):  
Xinwei Zhu ◽  
Yu Zhong ◽  
Zihui Xie ◽  
Manlin Wu ◽  
Zhibo Hu ◽  
...  

AbstractTwo novel cyclic hexadepsipeptides, fusarihexin A (1) and fusarihexin B (2), and two known compounds, cyclo-(L-Leu–L-Leu–D-Leu–L-Leu–L-Val) (3) and cyclo-(L-Leu–L-Leu–D-Leu–L-Leu–L-Ile) (4), were isolated from the marine mangrove endophytic fungus Fusarium sp. R5. Their chemical structures were elucidated on the basis of spectroscopic data and Marfeyʼs analysis. In an in vitro bioassay, fusarihexin A (1) remarkably inhibited three plant pathogenic fungi: Colletotrichum gloeosporioides (Penz.) Sacc., which causes anthracnose in many fruits and vegetables, Colletotrichum musae (Berk. and M. A. Curtis) Arx, which causes crown rot and anthracnose in bananas, and Fusarium oxysporum Schlecht. f. sp. lycopersici (Sacc.) W. C. Snyder et H. N. Hansen, which causes Fusarium wilt and fruit rot in tomatoes. Fusarihexin B (2) strongly inhibited C. gloeosporioides and C. musae. The compounds were more potent than carbendazim, which is widely used as an agricultural and horticultural fungicide worldwide.


2019 ◽  
Vol 136 ◽  
pp. 06006
Author(s):  
Qiyu Lu ◽  
Ji Liu ◽  
Caihong Tu ◽  
Juan Li ◽  
Chunlong Lei ◽  
...  

To determine the antibacterial effect of 34 plant essential oils on Alternaria alternata, 34 plant essential oils such as asarum essential oil, garlic essential oil, and mustard essential oil are used as inhibition agents to isolate A. alternata from citrus as indicator bacteria, through the bacteriostasis test and drug susceptibility test, the types of essential oils with the best inhibitory effect were screened and their concentration was determined. The results showed that the best inhibition effect was mustard essential oil with a minimum inhibitory concentration of 250 μl/L and a minimum bactericidal concentration of 250 μl/L. Followed by the Litsea cubeba essential oil and basil oil, the minimum inhibitory concentration is 500 μl/L.


2020 ◽  
Vol 15 (8) ◽  
pp. 1934578X2093697
Author(s):  
Kuang-Ping Hsu ◽  
Yu-Chang Su ◽  
Chen-Lung Ho

In this study, antiphytopathogenic fungi activities of the leaf and cones essential oils and its constituents from Cunninghamia lanceolata were evaluated in vitro against 6 plant pathogenic fungi. The main compounds responsible for the antiphytopathogenic fungi activities were isolated and identified. The essential oil from the fresh leaves and cones of C. lanceolata was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS, respectively. The leaf oil consisted primarily of ferruginol (10%), τ-cadinol (8.2%), and α-cadinol (6.6%); the cones oil’s main constituents were abietadiene (42.5%), abietatriene (13.1%), and α-pinene (9.6%). Comparing the antiphytopathogenic fungi activities of the oils suggested that leaf oil was the most effective one. Further fractionation of the leaf oil produced ferruginol, τ-cadinol, and α-cadinol. The 3 compounds exhibited very strong antiphytopathogenic fungi activities. For the antiphytopathogenic fungi activities of the leaf oil, the active source compounds were determined to be ferruginol, τ-cadinol, and α-cadinol.


2019 ◽  
Vol 21 (2) ◽  
pp. 38-42
Author(s):  
Alicja Wodnicka ◽  
Elżbieta Huzar ◽  
Małgorzata Dzięcioł ◽  
Maria Krawczyk

Abstract The yield, composition and fungicidal activity of essential oils obtained from fennel fruits cultivated in Poland (FEOPOL) and Egypt (FEO-EG) were compared. The influence of the duration of hydrodistillation using a Clevenger apparatus on the essential oil yield was studied. The composition of the fennel essential oils was determined by GC-MS method. Studies have shown that FEO-POL and FEO-EG are two distinct chemotypes, which differ in yield and composition. The fennel fruits cultivated in Poland contained 4.14% of essential oil with trans-anethole as a main component. The plant material from Egypt was characterised by low content of essential oil (1.32%) with a predominant share of estragole. The fungicidal activity was tested in vitro against ten species of pathogenic fungi. The best result for FEO-POL was achieved against Sclerotinia sclerotiorum, Rhizoctonia solani and Botrytis cinerea. Antifungal activity of FEO-EG against tested fungi was weak or none.


2013 ◽  
Vol 41 (1) ◽  
pp. 86 ◽  
Author(s):  
Andrew VITORATOS ◽  
Dimitrios BILALIS ◽  
Anestis KARKANIS ◽  
Aspasia EFTHIMIADOU

Plant essential oils have the potential to replace the synthetic fungicides in the management of postharvest diseases of fruit and vegetables.The aim of this study was to access the in vitro and in vivo activity of essential oil obtained from oregano (Origanum vulgare L. ssp. hirtum), thyme (Thymus vulgaris L.) and lemon (Citrus limon L.) plants, against some important postharvest pathogens (Botrytis cinerea, Penicillium italicum and P. digitatum). In vitro experiments indicated that P. italicum did not show any mycelium growth in presence of thyme essential oils at concentration of 0.13 μl/ml. Moreover, B. cinerea did not show any mycelium growth in presence of lemon and oregano essential oils at concentration of 17 μl/ml and 0.02 μl/ml, respectively. Moreover, the essential oils from three species were effective in reducing the spore germination. The in vivo experiments confirmed the strong efficacy shown in vitro by essential oils. These oregano and lemon oils were very effective in controlling disease severity of infected fruit by B. cinera in tomatoes, strawberries and cucumbers. In tomatoes, grey mould due to B. cinerea was completed inhibited by oregano essential oils at 0.30 μl/ml. Moreover, lemon essential oils induced a significant reduction of grey mould disease severity. In strawberries, grey mould was completed inhibited by lemon essential oils at 0.05 μl/ml. In addition, lemon essential oils at 0.05 μl/ml showed 39% reduction of infected cucumber fruits by B. cinerea. These results indicate that essential oils after suitable formulation could be used for the control of postharvest diseases caused by Botrytis and Penicillium pathogens.


2021 ◽  
Vol 19 (3) ◽  
pp. 449-466
Author(s):  
Nattha Vigad ◽  
◽  
Wattana Pelyuntha ◽  
Prapakorn Tarachai ◽  
Sunee Chansakaow ◽  
...  

A preparation of essential oils to control chicken lice (Menopon gallinae) and mites (Ornithonyssus bursa) was developed. Each essential oil was effective against lice and mite in vitro. Citronella oil at the lowest concentration of 0.208 µg/cm2 resulted in a mortality rate of 100% in chicken lice, whereas a higher concentration of cloves, lemongrass, ginger, Makwan oil (0.416 µg/cm2), and Litsea oil (0.832 µg/cm2) was also found to be effective. A 100% rate of mortality for mites was observed using citronella and ginger oil at a concentration of 0.416 µg/cm2. At the same concentration, cloves, lemongrass, Litsea, and Makwan oil exhibited mortality rates in mites of 77.96%, 93.33%, 87.30%, and 93.49%, respectively. The efficacy of citronella oil and ginger oil against lice and mites was further examined in vivo. Citronella and ginger oil affected the rate of decline in lice from day 1 to day 14, whereas the number of mites living in nests declined from day 1 to day 7. The reduction of these parasitic insects may be correlated with the chemical constituents present in each essential oil. The active ingredients likely acted insecticidal agents against both parasitic insects. Moreover, the preparation developed here did not cause any side effects, such as dermatitis and respiratory disorders, during animal trials. Hence, preparations comprised of the essential oils of citronella and ginger can be further developed and used as insecticidal agents to control and/or eliminate chicken lice and mites on commercial farms.


2019 ◽  
Vol 136 ◽  
pp. 06005
Author(s):  
Qiyu Lu ◽  
Ji Liu ◽  
Caihong Tu ◽  
Feida Di ◽  
Qi Zheng ◽  
...  

In order to develop natural antistaling agent for Morchella preservation, reduce environmental pollution problems. In this experiment, the fungus pathogenic fungi were isolated and identified, and the antibacterial activity of the pathogen was determined by using 30 plant essential oils. The results showed that the fungal strain YDJ-S was isolated from the naturally occurring Morchella, belonging to the Fusarium proliferatum, which showed obvious pathogenicity. In vitro antibacterial experiments of essential oils show that in 30 kinds of essential oils, five essential oils of Basil, Cinnamon, Litsea cubeba, Clove and Garlic have obvious inhibitory effect on strain YDJ-S, and the inhibition rate is 100% at 1000 μl/L. Basil essential oil has the most obvious inhibitory effect on the minimum inhibitory concentration and minimum bactericidal concentration of strain YDJ-S, the minimum inhibitory concentration is 250 μl/L, and the minimum bactericidal concentration is 1000 μl/L, to lay the theoretical foundation for further research.


2019 ◽  
Vol 83 (1) ◽  
pp. 163-171 ◽  
Author(s):  
SAÚL REDONDO-BLANCO ◽  
JAVIER FERNÁNDEZ ◽  
SARA LÓPEZ-IBÁÑEZ ◽  
ELISA M. MIGUÉLEZ ◽  
CLAUDIO J. VILLAR ◽  
...  

ABSTRACT Synthetic food additives generate a negative perception in consumers. This fact generates an important pressure on food manufacturers, searching for safer natural alternatives. Phytochemicals (such as polyphenols and thiols) and plant essential oils (terpenoids) possess antimicrobial activities that are able to prevent food spoilage due to fungi (e.g., Aspergillus, Penicillium) and intoxications (due to mycotoxins), both of which are important economic and health problems worldwide. This review summarizes industrially interesting antifungal bioactivities from the three main types of plant nutraceuticals: terpenoids (as thymol), polyphenols (as resveratrol) and thiols (as allicin) as well as some of the mechanisms of action. These phytochemicals are widely distributed in fruits and vegetables and are very useful in food preservation as they inhibit growth of important spoilage and pathogenic fungi, affecting especially mycelial growth and germination. Terpenoids and essential oils are the most abundant group of secondary metabolites found in plant extracts, especially in common aromatic plants, but polyphenols are a more remarkable group of bioactive compounds as they show a broad array of bioactivities. HIGHLIGHTS


2012 ◽  
Vol 32 (1) ◽  
pp. 167-172 ◽  
Author(s):  
Alessandra Farias Millezi ◽  
Danila Soares Caixeta ◽  
Diogo Francisco Rossoni ◽  
Maria das Graças Cardoso ◽  
Roberta Hilsdorf Piccoli

Several essential oils of condiment and medicinal plants possess proven antimicrobial activity and are of important interest for the food industry. Therefore, the Minimum Inhibitory Concentrations (MIC) of those oils should be determined for various bacteria. MIC varies according to the oil used, the major compounds, and the physiology of the bacterium under study. In the present study, the essential oils of the plants Thymus vulgaris (time), Cymbopogon citratus (lemongrass) and Laurus nobilis (bay) were chemically quantified, and the MIC was determined on the bacteria Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Listeria monocytogenes ATCC 19117, Salmonella enterica Enteritidis S64, and Pseudomonas aeruginosa ATCC 27853. The essential oil of C. citratus demonstrated bacterial activity at all concentrations tested and against all of the bacteria tested. The majority of essential oil compounds were geranial and neral. The major constituent of T. vulgaris was 1.8-cineol and of L. nobilis was linalool, which presented lower antibacterial activity, followed by 1.8-cineol. The Gram-negative bacteria demonstrated higher resistance to the use of the essential oils tested in this study. E. coli was the least sensitive and was inhibited only by the oils of C. citratus and L. nobilis.


Sign in / Sign up

Export Citation Format

Share Document