scholarly journals Plant Phytochemicals in Food Preservation: Antifungal Bioactivity: A Review

2019 ◽  
Vol 83 (1) ◽  
pp. 163-171 ◽  
Author(s):  
SAÚL REDONDO-BLANCO ◽  
JAVIER FERNÁNDEZ ◽  
SARA LÓPEZ-IBÁÑEZ ◽  
ELISA M. MIGUÉLEZ ◽  
CLAUDIO J. VILLAR ◽  
...  

ABSTRACT Synthetic food additives generate a negative perception in consumers. This fact generates an important pressure on food manufacturers, searching for safer natural alternatives. Phytochemicals (such as polyphenols and thiols) and plant essential oils (terpenoids) possess antimicrobial activities that are able to prevent food spoilage due to fungi (e.g., Aspergillus, Penicillium) and intoxications (due to mycotoxins), both of which are important economic and health problems worldwide. This review summarizes industrially interesting antifungal bioactivities from the three main types of plant nutraceuticals: terpenoids (as thymol), polyphenols (as resveratrol) and thiols (as allicin) as well as some of the mechanisms of action. These phytochemicals are widely distributed in fruits and vegetables and are very useful in food preservation as they inhibit growth of important spoilage and pathogenic fungi, affecting especially mycelial growth and germination. Terpenoids and essential oils are the most abundant group of secondary metabolites found in plant extracts, especially in common aromatic plants, but polyphenols are a more remarkable group of bioactive compounds as they show a broad array of bioactivities. HIGHLIGHTS

2018 ◽  
Vol 28 (4) ◽  
pp. 10-18
Author(s):  
Zahaed Evangelista-Martínez ◽  
Nohemí Reyes-Vázquez ◽  
Ingrid Rodríguez-Buenfil

Essential oils (EO) are promising natural antimicrobial additives to control microbial pathogens. This study aims to investigate the antimicrobial activities of plant essential oils and to study the antimicrobial effect of oregano oil (OrO) in combination with food preservatives. The antimicrobial screening showed that Escherichia coli and Salmonella enterica subsp. enterica serovar Typhimurium (Salmonella ser. Typhimurium) appeared to be less susceptible to EO, whereas Staphylococcus aureus and Candida albicans were more affected. The Minimum Inhibitory Concentration (MIC) and Minimum Lethal Concentration (MLC) for laurel, cumin, oregano and rosemary oils showed values ranging from 0.078% to 1.25% (v/v). Also, synergic and viability effects of OrO combined with acetic acid (AcA) showed an additive effect against E. coli and C. albicans, while combination OrO + ascorbic acid (Asc) exhibited the same effect over Salmonella ser. Typhimurium and C. albicans. Therefore, oregano oil in combination with preservatives could be used to control the growth of pathogenic microorganisms for food preservation.


2020 ◽  
Vol 10 (22) ◽  
pp. 8103
Author(s):  
Azam Amiri ◽  
Javad Mottaghipisheh ◽  
Fatemeh Jamshidi-Kia ◽  
Karamatollah Saeidi ◽  
Sara Vitalini ◽  
...  

Due to the increasing risk of chemical contaminations in the application of synthetic fungicides, the use of plant essential oils and extracts has recently been increased. In the present review, the antimicrobial potential of the most active plant-food essential oils in liquid and vapor phases has been reviewed. The volatile isothiocyanates, aldehydes, and phenols, including allyl isothiocyanate, carvacrol, thymol, and eugenol, are considered to be the predominant components of essential oils, possessing significant antimicrobial activities. These components alone or in mixture can be effective. Overall, the antimicrobial activity of aroma compounds depends on the plant species, concentration, and method of application. This review provides useful information about the inhibitory application of the most common plant-foods’ essential oils in liquid and vapor phases against the growth of pathogenic microorganisms. Essential oils (EOs) are promising natural antimicrobial alternatives in food processing facilities. Although the food industry primarily uses spices and herbs to impart flavor, aroma, and pungency to foods, potent EOs represent interesting sources of natural products for food preservation.


Author(s):  
Gaurav Naik ◽  
Ujjwal Bhandari ◽  
Garima Gwari ◽  
Hema Lohani

Resistance to conventional fungicides causes the poor disease control of agriculture plant essential oils have a great potential as novel fungicide sources for controlling pathogenic fungi. In this study antifungal activity of the essential oil of Cymbopogon distans and Cinnamomum tamala were evaluated in vitro against ten plants pathogenic fungal activity was evaluated with three replicates. The result showed C. distans and C. tamala essential oil with maximum zone of inhibition against Fusarium sp. (12.53 ± 0.97 mm) and P. aurantiogriseum (12.06 ± 0.52 mm) while minimum activity was seen against R. solani (6.83 ± 0.41, 6.16 ± 0.16 mm) zone of inhibition respectively. The highest efficacy was observed for C.distans essential oil where the MIC values 0.625 mg/ ml against A. flavus and Pythium sp. So, plant essential oils have the potential to replace the synthetic fungicides in the management of postharvest diseases of fruits and vegetables.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1567
Author(s):  
Ippolito Camele ◽  
Daniela Gruľová ◽  
Hazem S. Elshafie

Several economically important crops, fruits and vegetables are susceptible to infection by pathogenic fungi and/or bacteria postharvest or in field. Recently, plant essential oils (EOs) extracted from different medicinal and officinal plants have had promising antimicrobial effects against phytopathogens. In the present study, the potential microbicide activity of Mentha × piperita cv. ‘Kristinka’ (peppermint) EO and its main constituents have been evaluated against some common phytopathogens. In addition, the cell membrane permeability of the tested fungi and the minimum fungicidal concentrations were measured. The antifungal activity was tested against the following postharvest fungi: Botrytis cinerea, Monilinia fructicola, Penicillium expansum and Aspergillus niger, whereas antibacterial activity was evaluated against Clavibacter michiganensis, Xanthomonas campestris, Pseudomonas savastanoi and P. syringae pv. phaseolicola. The chemical analysis has been carried out using GC-MS and the main components were identified as menthol (70.08%) and menthone (14.49%) followed by limonene (4.32%), menthyl acetate (3.76%) and β-caryophyllene (2.96%). The results show that the tested EO has promising antifungal activity against all tested fungi, whereas they demonstrated only a moderate antibacterial effect against some of the tested bacteria.


2013 ◽  
pp. 171-183 ◽  
Author(s):  
Emilija Ivanova ◽  
Natalija Atanasova-Pancevska ◽  
Dzoko Kungulovski

It is well known that essential oils possess significant antimicrobial activity. This study was conducted to estimate the antimicrobial activity of various types of Biokill, a laboratory produced solution composed of several essential oils (Biokill dissolved in 96% ethanol; Biokill 96% further dissolved in DMSO; Biokill dissolved in 70% ethanol and Biokill 70% further dissolved in DMSO). The antimicrobial activity was evaluated against five selected fungal strains, Candida albicans ATCC 10231, Saccharomyces cerevisiae ATCC 9763, Aspergillus niger I.N. 1110, Aspergillus sojae CCF and Penicillium spp. FNS FCC 266. A variation of the microtiter plate-based antimicrobial assay was used in order to assess the antimicrobial activity of the solutions. By applying this assay minimal inhibitory concentrations (MIC) of the Biokill solutions were determined for each strain of the selected test microorganisms. The results demonstrated that all variations of Biokill showed antimicrobial activity at concentrations lower than 2.5?g/mL. Biokill 70% further dissolved in DMSO showed the best antimicrobial properties against all the selected strains with MICs less than 1.25?g/mL. These results indicated that Biokill could find application in the pharmaceutical industry, in food preservation and conservation, in the prevention and treat?ment of plants infected by certain phytopathogens, etc.


2009 ◽  
Vol 45 (No. 2) ◽  
pp. 66-73 ◽  
Author(s):  
M. Zouhar ◽  
O. Douda ◽  
D. Lhotský ◽  
R. Pavela

The aim of this study was to assess the nematicidal activity of different essential oils from medicinal and aromatic plants for use in nematode management. Essential oils of <I>Eugenia caryophyllata, Origanum compactum, Origanum vulgare, Thymus matschiana</I> and <I>Thymus vulgaris</I> showed nematicidal activity against <I>Ditylenchus dipsaci.</I>


2004 ◽  
pp. 77-81 ◽  
Author(s):  
H.R. Juliani ◽  
J.E. Simon ◽  
M.M.R. Ramboatiana ◽  
O. Behra ◽  
A. Garvey ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1091
Author(s):  
Soumi De-Montijo-Prieto ◽  
María del Carmen Razola-Díaz ◽  
Ana María Gómez-Caravaca ◽  
Eduardo Jesús Guerra-Hernandez ◽  
María Jiménez-Valera ◽  
...  

In the field of food preservation, encapsulated Essential Oils (EOs) could be the best non-toxic and eco-friendly tool for food preservative applications substituting the chemicals ones that have several disadvantages for the environment and health. Thirteen commercial EOs from plants, fruits, and vegetables were characterized by GC-MS. The antioxidant activity was measured by DPPH and ABTS techniques. Antimicrobial activity was assessed by agar well-diffusion method and the Minimum Inhibitory Concentration (MIC) by agar dilution method against six bacteria, Candida albicans, and Botrytis cinerea. All the EOs tested have demonstrated antioxidant activity in the range of IC50 0.01–105.32 mg/mL. Between them, cinnamon EOs were the best, followed by oregano and thyme EOs. Fennel EO showed the lowest radical scavenging. MIC values ranged from 0.14 to 9 mg/mL. C. cassia, thyme, and oregano EOs were the most effective against the bacterial species tested, and the yeast C. albicans. On the contrary, citric fruit EOs showed low or no inhibition against most bacterial strains. The percentages of inhibition of mycelia growth of B. cinerea ranged from 3.4 to 98.5%. Thyme, oregano, mint, and fennel EOs showed the highest inhibition.


2019 ◽  
Vol 20 (2) ◽  
pp. 90-96
Author(s):  
Nurul Azizah ◽  
Euis Filaila ◽  
Salahuddin Salahuddin ◽  
Egi Agustian ◽  
Anny Sulaswatty ◽  
...  

The rhizome of ginger is commonly used as a spice, food, beverage as well as medicine. Plant essential oils including from ginger have been widely used for food preservation, pharmaceutical and alternative medicines.  Currently there are growing interest of consumer for natural sources such as essential oils for natural antibacterial and antioxidant.  Jahe emprit (Zingiber officinale var. Amarum) is one of Indonesian ginger variety used to obtain ginger essential oil. The objective of current study was to investigate the effect of solvent to feed (SF) ratio in hydrodistillation process on yield, chemicals content, antibacterial and antioxidant activities of ginger essential oils from jahe emprit.  SF ratio used in this study is 0.7: 1, 1.7: 1, 2.7: 1.  Chemicals content was conducted using GCMS analysis.  Antibacterial assay was conducted using disc diffusion method against Escherichia coli and Staphylococcus aureus.  Antioxidant assay was conducted using DPPH free radical scavenging assay.  The results show that the highest essential oil yield was obtained from SF ratio 1.7:1 which gave yield of 3.7%.  GCMS analysis shows that camphene was always the major compound present in those 3 SF ratio, although the amount present was differed.  Besides, 4 other major compounds present were varied.  Antibacterial assay using 1% concentration showed ginger oil obtained from SF 0.7:1 and 2.7:1 have the same activities for S. aureus, whereas SF ratio 1.7:1 has the lowest activities.  However for E. coli, all SF ratio gave same results.  For antioxidant activities at 1000 ppm concentration, the highest activity was obtained from SF ratio 2.7:1


Sign in / Sign up

Export Citation Format

Share Document