Exogenous proline application enhances the efficiency of nitrogen fixation and assimilation in chickpea plants exposed to cadmium

Author(s):  
Mohammed Nasser Alyemeni ◽  
Qaiser Hayat ◽  
Shamsul Hayat ◽  
Mohammad Faizan ◽  
Ahmad Faraz

Seeds of chickpea were sown in the pots supplemented with 0, 25, 50 or 100 mg of cadmium per kg of soil. At the stage of 30 days after sowing (DAS), the raised plants were sprayed with 20 mM proline except for the control plants which received double distilled water (DDW). The increasing degree of damage caused by the increasing concentration of Cd in soil was partially overcome by proline application. The treatment of 25 mg Cd fed plants with 20 mM proline increased significantly the nodulation parameters, leghemoglobin and carbohydrate content, leaf nitrogen and root nitrate content, activity of enzymes nitrogenase (E.C 1.18.6.1), nitrate reductase (E.C. 1.6.6.1), glutamine synthetase (GS) (E.C 6.3.1.2), glutamate synthase (GOGAT) (E.C 1.4.7.1) and glutamate dehydrogenase (GDH) (E.C 1.4.1.3) over that of the control. The value of these parameters was found to be at par with that of the control in the plants exposed to 50 mg Cd per kg of soil and also treated with 20 mM proline. However, the treatment was not found to be effective in alleviating the adverse effects of 100 mg Cd per kg of soil.

2012 ◽  
Vol 58 (No. 9) ◽  
pp. 417-423 ◽  
Author(s):  
Q. Hayat ◽  
S. Hayat ◽  
M.N. Alyemeni ◽  
A. Ahmad

The present study reveals that the foliar application of salicylic acid (SA), irrespective of the concentration used, generated an increase of dry mass per plant, nodule dry mass and leghemoglobin content in chickpea plants. The activity of nitrogenase (E.C 1.18.6.1), nitrate reductase (NR) (E.C. 1.6.6.1), glutamine synthetase (GS) (E.C 6.3.1.2), glutamate synthase (GOGAT) (E.C 1.4.7.1) and glutamate dehydrogenase (GDH) (E.C 1.4.1.3) increased as well. Among the three concentrations of SA, the order of response was found to be 10<sup>&ndash;5</sup> mol/L &gt; 10<sup>&ndash;6</sup> mol/L &gt; 10<sup>&ndash;4</sup> mol/L &gt; control.


2000 ◽  
Vol 12 (3) ◽  
pp. 195-202 ◽  
Author(s):  
SUSANA GONNET ◽  
PEDRO DÍAZ

Lotus corniculatus, L. tenuis, L. pedunculatus, and L. subbiflorus inoculated with Mesorhizobium loti NZP2037 strain were grown in a growth chamber. The plants dry weight (DW), the nodule fresh weight (FW), the nitrogenase activity, the nodule glutamine synthetase (GS) and glutamate synthase (GOGAT) activities, as well as the leghemoglobin content and the amino acid in the stem were measured 28 days after inoculation. The highest DW of plants was measured in L. tenuis and the highest FW of nodules was measured in L. pedunculatus. Nitrogenase activity in L. tenuis, L. pedunculatus and L. subbiflorus was six fold the activity in L. corniculatus. Nodule GS and GOGAT activities did not follow this same pattern. L. tenuis had the highest values of GS and GOGAT activities in the nodule, and a high nitrogenase activity which is consistent with its high plant DW. The four species of Lotus were compared and no correlation between nitrogen fixation parameters and ammonia assimilation enzymes was found, but the GS/GOGAT ratio has a positive and significant correlation (r²=0.82**) with the amino acid content in stems.


1979 ◽  
Vol 57 (7) ◽  
pp. 754-758 ◽  
Author(s):  
D. Barry Scott ◽  
Carlos A. Neyra

The patterns of nitrate reduction, nitrate accumulation, and glutamine synthetase activity as a function of leaf development were studied in glasshouse-grown sorghum (Sorghum vulgare L. var. Dourado) seedlings. Leaf nitrate reductase activity increased during early leaf development and reached a maximum at full leaf expansion which was followed by a decline with leaf maturation. Leaf nitrate content closely paralleled the pattern of nitrate reductase activity for each individual leaf along the canopy. Glutamine synthetase activity increased during early leaf development but then remained constant until senescence. Etiolated leaves from nitrate-grown plants had minimal levels of nitrate reductase activity which increased markedly upon illumination. Glutamine synthetase activity was already high in those leaves and increased only slightly during greening. Crude preparations of glutamine synthetase were insensitive to cyanide and both the biosynthetic and transferase assays were enhanced by cysteine. The relatively high activities of glutamine synthetase throughout leaf development and greening indicate that this enzyme does not limit the assimilation of nitrate into amino acids and plays a role in the assimilation of ammonia from sources other than NO3− reduction.


FEBS Journal ◽  
2017 ◽  
Vol 284 (6) ◽  
pp. 903-918 ◽  
Author(s):  
Gabriela de C. Fernandes ◽  
Ksenia Hauf ◽  
Fernando H. Sant'Anna ◽  
Karl Forchhammer ◽  
Luciane M. P. Passaglia

2007 ◽  
Vol 37 (4) ◽  
pp. 533-541 ◽  
Author(s):  
Denize Caranhas de Sousa Barreto ◽  
José Francisco de Carvalho Gonçalves ◽  
Ulysses Moreira dos Santos Júnior ◽  
Andreia Varmes Fernandes ◽  
Adriana Bariani ◽  
...  

The rosewood (Aniba rosaeodora Ducke) is a native tree species of Amazon rainforest growing naturally in acidic forest soils with reduced redox potential. However, this species can also been found growing in forest gaps containing oxide soils. Variations in the forms of mineral nitrogen (NO3- or NH4+) may be predicted in these different edaphic conditions. Considering that possibility, an experiment was carried out to analyze the effects of different NO3-:NH4+ ratios on the growth performance, mineral composition, chloroplastid pigment contents, photochemical efficiency photosystem II (PSII), and nitrate redutase activity (RN, E.C.1.6.6.1) on A. rosaeodora seedlings. Nine-month-old seedlings were grown in pots with a washed sand capacity of 7.5 kg and submitted to different NO3-:NH4+ ratios (T1 = 0:100%, T2 = 25:75%, T3 = 50:50%, T4 = 75:25%, and T5 = 100:0%). The lowest relative growth rate was observed when the NO3-:NH4+ ratio was equal to 0:100%. In general, high concentrations of NO3- rather than NH4+ favored a greater nutrient accumulation in different parts of the plant. For the chloroplastid pigment, the highest Chl a, Chl b, Chl tot, Chl a/b and Chl tot/Cx+c contents were found in the treatment with 75:25% of NO3-:NH4+, and for Chl b and Cx+c it was observed no difference. In addition, there was a higher photochemical efficiency of PSII (Fv/Fm) when high NO3- concentrations were used. A linear and positive response for the nitrate reductase activity was recorded when the nitrate content increased on the culture substrate. Our results suggest that A. rosaeodora seedlings have a better growth performance when the NO3- concentrations in the culture substrate were higher than the NH4+ concentrations.


Sign in / Sign up

Export Citation Format

Share Document