scholarly journals Bacterial Plasmids Profile from Escherichia coli Resistant to Metronidazole and Nalidixic Acid

el–Hayah ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 23
Author(s):  
Arya Iswara ◽  
Sri Sinto Dewi

bacteria that cause an illness. Antibiotic treatments to a patient have a purpose to eliminate the pathogen bacteria. Bacteria resistance to antibiotic was influenced by the intensity of antibiotic treatment in a region, the uncontrolled antibiotics treatments would increase the antibiotic resistance of bacteria. Plasmids was an extrachromosomal DNA that encodes a functional protein that would eliminate the antibiotic activity. Plasmid is the determinant of bacteria sensitivity to antibiotics. In this case it would be important to find out the bacterial plasmid profile on the E.coli resistant to metronidazole and nalidixic acid antibiotics. This research was using four different sample from faces of diarrhea, ice block, waters from well, and ketchup to cultivate the E. coli. lasmid isolation method was carried out by lyses alkali method. Plasmid profile of the E. coli that resistant to metronidazole and nalidixic acid antibiotics and analyzed using electrophoresis on 1% agarose. E. coli plasmid DNA profile was observed as a fluorescent DNA band in ultraviolet rays. In result, isolated plasmids from bacteria that resistant to antibiotics metronidazole and nalidixic acid having similar size approximately 500 bp, different from bacteria that sensitive to antibiotics metronidazole and nalidixic acid has a smaller size in region of 100 bp.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Amit Gaurav ◽  
Varsha Gupta ◽  
Sandeep K. Shrivastava ◽  
Ranjana Pathania

AbstractThe increasing prevalence of antimicrobial resistance has become a global health problem. Acinetobacter baumannii is an important nosocomial pathogen due to its capacity to persist in the hospital environment. It has a high mortality rate and few treatment options. Antibiotic combinations can help to fight multi-drug resistant (MDR) bacterial infections, but they are rarely used in the clinics and mostly unexplored. The interaction between bacteriostatic and bactericidal antibiotics are mostly reported as antagonism based on the results obtained in the susceptible model laboratory strain Escherichia coli. However, in the present study, we report a synergistic interaction between nalidixic acid and tetracycline against clinical multi-drug resistant A. baumannii and E. coli. Here we provide mechanistic insight into this dichotomy. The synergistic combination was studied by checkerboard assay and time-kill curve analysis. We also elucidate the mechanism behind this synergy using several techniques such as fluorescence spectroscopy, flow cytometry, fluorescence microscopy, morphometric analysis, and real-time polymerase chain reaction. Nalidixic acid and tetracycline combination displayed synergy against most of the MDR clinical isolates of A. baumannii and E. coli but not against susceptible isolates. Finally, we demonstrate that this combination is also effective in vivo in an A. baumannii/Caenorhabditis elegans infection model (p < 0.001)


1970 ◽  
Vol 34 (1) ◽  
pp. 99-101
Author(s):  
Mohammad Shahriar ◽  
Mahboob Hossain ◽  
Shaila Kabir

A study of antimicrobial sensitivity of Escherichia coli (E. coli) isolated from clinical sourcesof different diagnostic centers of Dhaka, Bangladesh was carried out to facilitate the choice of drugin the management of E. coli induced symptoms. Very low sensitivity of E. coli towards ampicillin(4%), aztreonam (4%), cloxacillin (5%), nalidixic acid (5%), ciprofloxacin (7.5%), ceftriaxone(12.5%), doxycycline (12.5%), ceftazidime (16.25%), co-trimoxazole (20%), chloramphenicol(22.51%), tetracycline (25%), and netilmicin (35%) was observed. Higher sensitivity pattern wasobserved for gentamicin (56%) and only imipenem (95%) showed sensitivity pattern possiblysusceptible enough to consider for the management of E. coli induced cases in the area under study.The low sensitivity to different antimicrobial could be attributed to their prevailing usage and abusein the area under study.Key words: E. coli; Antimicrobial sensitivity; Clinical isolatesDOI: 10.3329/jbas.v34i1.5497Journal of Bangladesh Academy of Sciences, Vol.34, No.1, 99-101, 2010


2003 ◽  
Vol 185 (13) ◽  
pp. 3871-3877 ◽  
Author(s):  
Nobuhisa Furuya ◽  
Teruya Komano

ABSTRACT The origin of transfer (oriT) of a bacterial plasmid plays a key role in both the initiation and termination of conjugative DNA transfer. We have previously shown that a conjugation-dependent recombination between the tandem R64 oriT sequences cloned into pHSG398 occurred, resulting in the deletion of the intervening sequence during DNA transfer. In this study, we tandemly cloned two oriT sequences of IncI1 plasmid R64 into pUC18. Specific recombination between the two oriT sequences in pUC18 was observed within Escherichia coli cells harboring mini-R64. This recombination was found to be independent of both the recA gene and conjugative DNA transfer. The R64 genes nikA and nikB, required for conjugal DNA processing, were essential for this recombination. Although a fully active 92-bp oriT sequence was required at one site for the recombination, the 44-bp oriT core sequence was sufficient at the other site. Furthermore, when two oriT sequences were tandemly cloned into the single-stranded phage vector M13 and propagated within E. coli cells, recombination between the two oriT sequences was observed, depending on the nikB gene. These results suggest that the R64 relaxase protein NikB can execute cleavage and rejoining of single-stranded oriT DNA within E. coli cells, whereas such a reaction in double-stranded oriT DNA requires collaboration of the two relaxosome proteins, NikA and NikB.


1997 ◽  
Vol 60 (8) ◽  
pp. 1001-1005 ◽  
Author(s):  
MARIA A. TESSI ◽  
MARIA S. SALSI ◽  
MARIA I. CAFFER ◽  
MARIA A. MOGUILEVSKY

The antibiotic resistance profiles and transferable R factors of Salmonella and Escherichia coli isolates from 104 broiler carcasses taken from one processing plant were determined. Carcasses were sampled after immersion chilling. All samples were transported iced and immediately analyzed upon arrival to the laboratory. The resistance patterns of isolates to 12 antibiotics were determined (i.e., ampicillin, cephalothin, streptomycin, sulfisoxazole, trim-ethoprim-sulfamethoxazole, nalidixic acid, tetracycline, neomycin, chloramphenicol, gentamicin, colistin, and nitrofurantoin). Isolates resistant to one or more antibiotics were utilized as donors of resistance to completely antibiotic-sensitive strains, an E. coli K-12, F−, J5, azide-resistant strain and a Salmonella serovar Enteritidis. Transfer of the different R plasmids was confirmed by the determination of the resistance patterns of the transconjugants. Of the 93 Salmonella and 71 E. coli strains isolated from these samples, the largest numbers were resistant to tetracycline (52.7% and 49.3%), sulfisoxazole (45.2% and 42.3%), and streptomycin (37.6% and 39.4%). Large percentages of the Salmonella (33.3%) and the E. coli (30.0%) strains transferred all or part of their resistance to E. coli K-12 in mixed cultures. Great variation was observed between different strains in the frequency at which they transferred resistance. Resistance to tetracycline, sulfisoxazole, and streptomycin was found to be conferred by 31.7%, 29.8%, and 21.6% of the 19 R factors identified. No transfer of resistance to nalidixic acid, gentamicin, cephalothin, nitrofurantoin, and chloramphenicol was detected. When 30 antibiotic-resistant E. coli strains were cultured with a sensitive strain of Salmonella serovar Enteritidis,7 (23.3%) of the resistant strains were found capable of transferring R factors. Only 2 (6.7%) of the resistant strains could transfer R factors and unusual β-galactosidase activity.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Josephine A. Afema ◽  
Margaret A. Davis ◽  
William M. Sischo

Abstract Background This study is based on data collected to investigate the relation of peri-parturient events (colostrum quality, passive transfer of immunity, calving difficulty) on calf health and antimicrobial use. A component of the study was to provide feedback to farm management to identify calves at risk for disease and promote antimicrobial stewardship. At the start of the study (May 2016), a combination of enrofloxacin, penicillin, and sulfamethoxazole was the first treatment given to clinically abnormal calves. Based on feedback and interaction between study investigators, farm management and consulting veterinarians, a new policy was implemented to reduce antimicrobial use in calves. In August, the first treatment was changed to a combination of ampicillin and sulfamethoxazole. In September, the first treatment was reduced to only sulfamethoxazole. We investigated the effects of these policy changes in antimicrobial use on resistance in commensal Escherichia coli. Results We enrolled 4301 calves at birth and documented antimicrobial use until weaning. Most calves (99.4%) received antimicrobials and 70.4% received a total of 2–4 treatments. Antimicrobial use was more intense in younger calves (≤ 28 days) relative to older calves. We isolated 544 E. coli from fecal samples obtained from 132 calves. We determined resistance to 12 antimicrobials and 85% of the isolates were resistant to at least 3 antimicrobial classes. We performed latent class analysis to identify underlying unique classes where isolates shared resistance patterns and selected a solution with 4 classes. The least resistant class had isolates that were mainly resistant to only tetracycline and sulfisoxazole. The other 3 classes comprised isolates with resistance to ampicillin, chloramphenicol, aminoglycosides, sulfonamides, tetracycline, in addition to either ceftiofur; or nalidixic acid; or ciprofloxacin plus nalidixic acid and ceftiofur. Overall, E coli from younger calves and calves that received multiple treatments were more likely to have extensive resistance including resistance to fluoroquinolones and ceftiofur. In general, there was a declining trend in resistance to most antimicrobials during and after policy changes were implemented, except for ampicillin, ciprofloxacin, ceftiofur and gentamicin. Conclusions Information feedback to farms can influence farm managers to reduce antimicrobial use and this can change endemic farm resistance patterns.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Sonisilpa Mohapatra ◽  
Heejun Choi ◽  
Xueliang Ge ◽  
Suparna Sanyal ◽  
James C. Weisshaar

ABSTRACT In vitro assays find that ribosomes form peptide bonds to proline (Pro) residues more slowly than to other residues. Ribosome profiling shows that stalling at Pro-Pro-X triplets is especially severe but is largely alleviated in Escherichia coli by the action of elongation factor EF-P. EF-P and its eukaryotic/archaeal homolog IF5A enhance the peptidyl transfer step of elongation. Here, a superresolution fluorescence localization and tracking study of EF-P–mEos2 in live E. coli provides the first in vivo information about the spatial distribution and on-off binding kinetics of EF-P. Fast imaging at 2 ms/frame helps to distinguish ribosome-bound (slowly diffusing) EF-P from free (rapidly diffusing) EF-P. Wild-type EF-P exhibits a three-peaked axial spatial distribution similar to that of ribosomes, indicating substantial binding. The mutant EF-PK34A exhibits a homogeneous distribution, indicating little or no binding. Some 30% of EF-P copies are bound to ribosomes at a given time. Two-state modeling and copy number estimates indicate that EF-P binds to 70S ribosomes during 25 to 100% of translation cycles. The timescale of the typical diffusive search by free EF-P for a ribosome-binding site is τfree ≈ 16 ms. The typical residence time of an EF-P on the ribosome is very short, τbound ≈ 7 ms. Evidently, EF-P binds to ribosomes during many or most elongation cycles, much more often than the frequency of Pro-Pro motifs. Emptying of the E site during part of the cycle is consistent with recent in vitro experiments indicating dissociation of the deacylated tRNA upon translocation. IMPORTANCE Ribosomes translate the codon sequence within mRNA into the corresponding sequence of amino acids within the nascent polypeptide chain, which in turn ultimately folds into functional protein. At each codon, bacterial ribosomes are assisted by two well-known elongation factors: EF-Tu, which aids binding of the correct aminoacyl-tRNA to the ribosome, and EF-G, which promotes tRNA translocation after formation of the new peptide bond. A third factor, EF-P, has been shown to alleviate ribosomal pausing at rare Pro-Pro motifs, which are translated very slowly without EF-P. Here, we use superresolution fluorescence imaging to study the spatial distribution and ribosome-binding dynamics of EF-P in live E. coli cells. We were surprised to learn that EF-P binds to and unbinds from translating ribosomes during at least 25% of all elongation events; it may bind during every elongation cycle. Ribosomes translate the codon sequence within mRNA into the corresponding sequence of amino acids within the nascent polypeptide chain, which in turn ultimately folds into functional protein. At each codon, bacterial ribosomes are assisted by two well-known elongation factors: EF-Tu, which aids binding of the correct aminoacyl-tRNA to the ribosome, and EF-G, which promotes tRNA translocation after formation of the new peptide bond. A third factor, EF-P, has been shown to alleviate ribosomal pausing at rare Pro-Pro motifs, which are translated very slowly without EF-P. Here, we use superresolution fluorescence imaging to study the spatial distribution and ribosome-binding dynamics of EF-P in live E. coli cells. We were surprised to learn that EF-P binds to and unbinds from translating ribosomes during at least 25% of all elongation events; it may bind during every elongation cycle.


2016 ◽  
Vol 14 (6) ◽  
pp. 1-8
Author(s):  
Nazneen Jahan ◽  
Jamil Mahmud ◽  
Fatema Akter ◽  
Salequl Islam ◽  
M Rahman

Author(s):  
A. Banik ◽  
D. P. Isore ◽  
S. N. Joardar ◽  
K. Batabyal ◽  
S. Dey

Diarrhoea in canines is mainly caused by Escherichia coli which can be fatal also. To understand the depth of this infection, a study was undertaken to detect E. coli isolates from diarrhoeic and non-diarrhoeic dogs in Southern part of West Bengal. A total of 112 canine samples were tested during May to September 2012 revealing approx 63.4% (71) samples positive for Escherichia coli. The most common serotypes were O8 (23.9%) followed by O157 (19.7%), O101 (16.9%), O26 (15.5%), O153 (12.7%) and O6 (11.3%). Among these O6, O8, O26 and O157 were highly pathogenic to mice causing almost 100% mortality within 24hrs of inoculation and were also detected to be haemolytic on sheep blood agar plates except serotype O8. These isolates were mostly sensitive to nalidixic acid (80.29%), cotrimoxazole (78.88%), ciprofloxacin (74.65%), colistin and ceftriaxone (both 71.83%) but were resistant to amikacin (97.18%), kanamycin (95.78%), cephalexin (92.96%) and enrofloxacin (84.51%).


Sign in / Sign up

Export Citation Format

Share Document