scholarly journals Shear Strength of Fiber-Reinforced Clayey Sands

2017 ◽  
Vol 10 (4) ◽  
pp. 3767-3792 ◽  
Author(s):  
M Moradi ◽  
A Hamidi ◽  
Gh Tavakoli Mehrjardi ◽  
◽  
◽  
...  
2006 ◽  
Vol 33 (6) ◽  
pp. 726-734 ◽  
Author(s):  
Fariborz Majdzadeh ◽  
Sayed Mohamad Soleimani ◽  
Nemkumar Banthia

The purpose of this study was to investigate the influence of fiber reinforcement on the shear capacity of reinforced concrete (RC) beams. Both steel and synthetic fibers at variable volume fractions were investigated. Two series of tests were performed: structural tests, where RC beams were tested to failure under an applied four-point load; and materials tests, where companion fiber-reinforced concrete (FRC) prisms were tested under direct shear to obtain material properties such as shear strength and shear toughness. FRC test results indicated an almost linear increase in the shear strength of concrete with an increase in the fiber volume fraction. Fiber reinforcement enhanced the shear load capacity and shear deformation capacity of RC beams, but 1% fiber volume fraction was seen as optimal; no benefits were noted when the fiber volume fraction was increased beyond 1%. Finally, an equation is proposed to predict the shear capacity of RC beams.Key words: shear strength, fiber-reinforced concrete, RC beam, stirrups, energy absorption capacity, steel fiber, synthetic fiber.


Author(s):  
Brandt J. Ruszkiewicz ◽  
Gene Simpson ◽  
Eric Breidenbaugh

Abstract Flow Drill Screws are self-piercing, self-tapping screws used for single sided joining of light metals, such as aluminum. This technology has been adopted by many automotive OEMs for use in metals. Thread forming profiles exist for material stackups that are made of entirely metals and entirely polymers/composites. This research evaluated the effectiveness of these thread profiles in dissimilar metal-on-composite stackups. Thread profiles designed for use in polymers/composites and aluminum were compared with a traditional machine screw thread profile for flow drill joining of 1mm and 2mm thick 6061-T6 aluminum to 3mm thick thermoset carbon fiber reinforced polymer. The three thread profiles were manufactured as M5x25mm flow drill screws in their commercially available configurations and materials. Two parameter sets from the FDS equipment manufacturer were evaluated, the first designed for use with the polymer thread forming profile, the second designed for use with the aluminum thread forming profile. The thread profiles were evaluated based on outputs of process time, peak torque, and lap shear strength. The polymer thread profile had shorter process times than the other 2 profiles but caused more damage to itself and its mating material. All 3 thread profiles exhibited greater shear strength when aluminum was used as the lower sheet material.


Sign in / Sign up

Export Citation Format

Share Document