Using camera-trap technology to improve undergraduate education and citizen-science contributions in wildlife research

2015 ◽  
Vol 60 (2-3) ◽  
pp. 171-179 ◽  
Author(s):  
Melissa Karlin ◽  
Gabrielle De La Paz
2020 ◽  
Author(s):  
Thel Lucie ◽  
Chamaillé-Jammes Simon ◽  
Keurinck Léa ◽  
Catala Maxime ◽  
Packer Craig ◽  
...  

AbstractEcologists increasingly rely on camera trap data to estimate a wide range of biological parameters such as occupancy, population abundance or activity patterns. Because of the huge amount of data collected, the assistance of non-scientists is often sought after, but an assessment of the data quality is a prerequisite to their use.We tested whether citizen science data from one of the largest citizen science projects - Snapshot Serengeti - could be used to study breeding phenology, an important life-history trait. In particular, we tested whether the presence of juveniles (less than one or 12 months old) of three ungulate species in the Serengeti: topi Damaliscus jimela, kongoni Alcelaphus buselaphus and Grant’s gazelle Nanger granti could be reliably detected by the “naive” volunteers vs. trained observers. We expected a positive correlation between the proportion of volunteers identifying juveniles and their effective presence within photographs, assessed by the trained observers.We first checked the agreement between the trained observers for age classes and species and found a good agreement between them (Fleiss’ κ > 0.61 for juveniles of less than one and 12 month(s) old), suggesting that morphological criteria can be used successfully to determine age. The relationship between the proportion of volunteers detecting juveniles less than a month old and their actual presence plateaued at 0.45 for Grant’s gazelle and reached 0.70 for topi and 0.56 for kongoni. The same relationships were however much stronger for juveniles younger than 12 months, to the point that their presence was perfectly detected by volunteers for topi and kongoni.Volunteers’ classification allows a rough, moderately accurate, but quick, sorting of photograph sequences with/without juveniles. Obtaining accurate data however appears more difficult. We discuss the limitations of using citizen science camera traps data to study breeding phenology, and the options to improve the detection of juveniles, such as the addition of aging criteria on the online citizen science platforms, or the use of machine learning.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Monica Lasky ◽  
Arielle Parsons ◽  
Stephanie Schuttler ◽  
Alexandra Mash ◽  
Lincoln Larson ◽  
...  

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Lucie Thel ◽  
Simon Chamaillé-Jammes ◽  
Léa Keurinck ◽  
Maxime Catala ◽  
Craig Packer ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Nicole Egna ◽  
DAVID O CONNOR ◽  
Jenna Stacy Dawes ◽  
Mathias Tobler ◽  
Nicholas Pilfold ◽  
...  

2021 ◽  
Vol 13 (18) ◽  
pp. 10287
Author(s):  
Matyáš Adam ◽  
Pavel Tomášek ◽  
Jiří Lehejček ◽  
Jakub Trojan ◽  
Tomáš Jůnek

Camera traps are increasingly one of the fundamental pillars of environmental monitoring and management. Even outside the scientific community, thousands of camera traps in the hands of citizens may offer valuable data on terrestrial vertebrate fauna, bycatch data in particular, when guided according to already employed standards. This provides a promising setting for Citizen Science initiatives. Here, we suggest a possible pathway for isolated observations to be aggregated into a single database that respects the existing standards (with a proposed extension). Our approach aims to show a new perspective and to update the recent progress in engaging the enthusiasm of citizen scientists and in including machine learning processes into image classification in camera trap research. This approach (combining machine learning and the input from citizen scientists) may significantly assist in streamlining the processing of camera trap data while simultaneously raising public environmental awareness. We have thus developed a conceptual framework and analytical concept for a web-based camera trap database, incorporating the above-mentioned aspects that respect a combination of the roles of experts’ and citizens’ evaluations, the way of training a neural network and adding a taxon complexity index. This initiative could well serve scientists and the general public, as well as assisting public authorities to efficiently set spatially and temporarily well-targeted conservation policies.


Author(s):  
Mimi Arandjelovic ◽  
Colleen R Stephens ◽  
Maureen S McCarthy ◽  
Paula Dieguez ◽  
Ammie K Kalan ◽  
...  

The Pan African Programme: The cultured chimpanzee (PanAf) is a large-scale research project across the chimpanzee (Pan troglodytes) range which aims to better understand and model the socioecological and demographic drivers of chimpanzee diversity. As part of the PanAf, over 350,000 1-minute camera trap videos have been recorded. To annotate this large data set and ascertain individual chimpanzee identifications from 39 different temporary and collaborative chimpanzee research sites, we developed the web-based citizen science platform Chimp&See (www.chimpandsee.org) in collaboration with the Zooniverse. Chimp&See allows members of the general public to view the PanAf videos online and annotate which species are present and the behaviours they exhibit in each video. These citizen scientists also watch and discuss videos to determine unique chimpanzee individuals and match them from different video clips. Each video is viewed by up to 15 unique users, allowing us to obtain a confidence score based on the number of consensus matches for each identification. In this poster, we compare the accuracy and efficiency achieved by the general public on this platform to automated facial detection software and expert scientific annotators. We also evaluate whether citizen science and video camera trapping is a way forward for assessing chimpanzee age/sex structure, density and community size in a cost and time effective manner. Finally, we discuss the balance between maintaining user engagement and obtaining detailed and accurate scientific data from citizen scientists.


2013 ◽  
Vol 43 (1) ◽  
pp. 74-78 ◽  
Author(s):  
Douglas Sheil ◽  
Badru Mugerwa ◽  
Eric H. Fegraus
Keyword(s):  

Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 132 ◽  
Author(s):  
Siân E. Green ◽  
Jonathan P. Rees ◽  
Philip A. Stephens ◽  
Russell A. Hill ◽  
Anthony J. Giordano

Camera trapping has become an increasingly reliable and mainstream tool for surveying a diversity of wildlife species. Concurrent with this has been an increasing effort to involve the wider public in the research process, in an approach known as ‘citizen science’. To date, millions of people have contributed to research across a wide variety of disciplines as a result. Although their value for public engagement was recognised early on, camera traps were initially ill-suited for citizen science. As camera trap technology has evolved, cameras have become more user-friendly and the enormous quantities of data they now collect has led researchers to seek assistance in classifying footage. This has now made camera trap research a prime candidate for citizen science, as reflected by the large number of camera trap projects now integrating public participation. Researchers are also turning to Artificial Intelligence (AI) to assist with classification of footage. Although this rapidly-advancing field is already proving a useful tool, accuracy is variable and AI does not provide the social and engagement benefits associated with citizen science approaches. We propose, as a solution, more efforts to combine citizen science with AI to improve classification accuracy and efficiency while maintaining public involvement.


2016 ◽  
Author(s):  
Mimi Arandjelovic ◽  
Colleen R Stephens ◽  
Maureen S McCarthy ◽  
Paula Dieguez ◽  
Ammie K Kalan ◽  
...  

The Pan African Programme: The cultured chimpanzee (PanAf) is a large-scale research project across the chimpanzee (Pan troglodytes) range which aims to better understand and model the socioecological and demographic drivers of chimpanzee diversity. As part of the PanAf, over 350,000 1-minute camera trap videos have been recorded. To annotate this large data set and ascertain individual chimpanzee identifications from 39 different temporary and collaborative chimpanzee research sites, we developed the web-based citizen science platform Chimp&See (www.chimpandsee.org) in collaboration with the Zooniverse. Chimp&See allows members of the general public to view the PanAf videos online and annotate which species are present and the behaviours they exhibit in each video. These citizen scientists also watch and discuss videos to determine unique chimpanzee individuals and match them from different video clips. Each video is viewed by up to 15 unique users, allowing us to obtain a confidence score based on the number of consensus matches for each identification. In this poster, we compare the accuracy and efficiency achieved by the general public on this platform to automated facial detection software and expert scientific annotators. We also evaluate whether citizen science and video camera trapping is a way forward for assessing chimpanzee age/sex structure, density and community size in a cost and time effective manner. Finally, we discuss the balance between maintaining user engagement and obtaining detailed and accurate scientific data from citizen scientists.


Sign in / Sign up

Export Citation Format

Share Document