Fall Chinook Salmon (Oncorhynchus tshawytscha), Sand Roller (Percopsis transmontana), and Smallmouth Bass (Micropterus dolomieu) Interactions in a Snake River Reservoir: A Tale of Three Species

2019 ◽  
Vol 100 (1) ◽  
pp. 26 ◽  
Author(s):  
Rulon J Hemingway ◽  
Kenneth F Tiffan ◽  
John M Erhardt ◽  
Tobyn N Rhodes ◽  
Brad K Bickford
1998 ◽  
Vol 55 (4) ◽  
pp. 781-787 ◽  
Author(s):  
Noah S Adams ◽  
Dennis W Rondorf ◽  
Scott D Evans ◽  
Joseph E Kelly ◽  
Russell W Perry

Radiotelemetry data are often used to make inferences about an entire study population; therefore, the transmitter attachment method should be the one that least affects the study animal. Juvenile chinook salmon (Oncorhynchus tshawytscha) <120 mm in fork length (FL) with either gastrically or surgically implanted transmitters had significantly lower critical swimming speeds than control fish 1 and 19-23 days after tagging. For fish >120 mm FL, fish with gastric implants swam as well as controls 1 day but not 19-23 days after tagging. In contrast, fish with surgical implants swam as well as controls 19-23 days but not 1 day after tagging. During predation trials, fish with gastric or surgical implants were eaten by smallmouth bass (Micropterus dolomieu) in significantly greater numbers than controls. We do not recommend implanting transmitters (representing 4.6-10.4% of the fish's body weight) in fish <120 mm FL. Furthermore, surgical implants (representing 2.2-5.6% of the fish's body weight) may be the preferred method for biotelemetry studies of juvenile chinook salmon >120 mm FL.


1998 ◽  
Vol 55 (7) ◽  
pp. 1599-1606 ◽  
Author(s):  
Matthew G Mesa ◽  
Thomas P Poe ◽  
Alec G Maule ◽  
Carl B Schreck

We experimentally infected juvenile chinook salmon (Oncorhynchus tshawytscha) with Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease (BKD), to examine the vulnerability to predation of fish with differing levels of Rs infection and assess physiological change during progression of the disease. Immersion challenges conducted during 1992 and 1994 produced fish with either a low to moderate (1992) or high (1994) infection level of Rs during the 14-week postchallenge rearing period. When equal numbers of treatment and unchallenged control fish were subjected to predation by either northern squawfish (Ptychocheilus oregonensis) or smallmouth bass (Micropterus dolomieui), Rs-challenged fish were eaten in significantly greater numbers than controls by nearly two to one. In 1994, we also sampled fish every 2 weeks after the challenge to determine some stressful effects of Rs infection. During disease progression in fish, plasma cortisol and lactate increased significantly whereas glucose decreased significantly. Our results indicate the role that BKD may play in predator-prey interactions, thus ascribing some ecological significance to this disease beyond that of direct pathogen-related mortality. In addition, the physiological changes observed in our fish during the chronic progression of BKD indicate that this disease is stressful, particularly during the later stages.


1998 ◽  
Vol 55 (3) ◽  
pp. 658-667 ◽  
Author(s):  
Richard W Zabel ◽  
James J Anderson ◽  
Pamela A Shaw

A multiple-reach model was developed to describe the downstream migration of juvenile salmonids in the Columbia River system. Migration rate for cohorts of fish was allowed to vary by reach and time step. A nested sequence of linear and nonlinear models related the variation in migration rates to river flow, date in season, and experience in the river. By comparing predicted with observed travel times at multiple observation sites along the migration route, the relative performance of the migration rate models was assessed. The analysis was applied to cohorts of yearling chinook salmon (Oncorhynchus tshawytscha) captured at the Snake River Trap near Lewiston, Idaho, and fitted with passive integrated transponder (PIT) tags over the 8-year period 1989-1996. The fish were observed at Lower Granite and Little Goose dams on the Snake River and McNary Dam on the Columbia River covering a migration distance of 277 km. The data supported a model containing two behavioral components: a flow term related to season where fish spend more time in regions of higher river velocity later in the season and a flow-independent experience effect where the fish migrate faster the longer they have been in the river.


1995 ◽  
Vol 52 (7) ◽  
pp. 1442-1448 ◽  
Author(s):  
John M. Emlen

In the presence of historical data, population viability models of intermediate complexity can be parameterized and utilized to project the consequences of various management actions for endangered species. A general stochastic population dynamics model with density feedback, age structure, and autocorrelated environmental fluctuations was constructed and parameterized for best fit over 36 years of spring chinook salmon (Oncorhynchus tshawytscha) redd count data in five Idaho index streams. Simulations indicate that persistence of the Snake River spring chinook salmon population depends primarily on density-independent mortality. Improvement of rearing habitat, predator control, reduced fishing pressure, and improved dam passage all would alleviate density-independent mortality. The current value of the Ricker α should provide for a continuation of the status quo. A recovery of the population to 1957–1961 levels within 100 years would require an approximately 75% increase in survival and (or) fecundity. Manipulations of the Ricker β are likely to have little or no effect on persistence versus extinction, but considerable influence on population size.


Sign in / Sign up

Export Citation Format

Share Document