scholarly journals Predicted reconstruction of the profile distribution of minerals according to the content of the stable component in the crust light solonetz of dry-steppe zone in the south of Russia

2021 ◽  
pp. 173-207
Author(s):  
E. B. Varlamov ◽  
N. A. Churilin ◽  
A. E. Kaganova
2018 ◽  
Vol 93 ◽  
pp. 144-168 ◽  
Author(s):  
E. B. Varlamov ◽  
◽  
M. P. Lebedeva ◽  
N. A. Churilin ◽  
A. E. Churilina

Author(s):  
Elena Yakovleva

The characteristic of the spread of herbal ecosystems in the agrolandscapes of the Valui district of the South Russian province of the steppe zone of the Central Black Earth of Russia is given. Tramped pastures (with narrow-leaved bluegrass, sheep fescue, motley grass) predominate on the site of the indigenous (rich-motley grass, sheep fescue, feather-grass) Donetsk and middle-Don steppes.


2020 ◽  
pp. 13-26
Author(s):  
Ya. M. Golovanov ◽  
L. M. Abramova

The synthaxonomy and ecology of communities with predominance of Hordeum jubatum L., included in the «black list» of the Republic of Bashkortostan (Abramova, Golovanov, 2016a), the preliminary «black list» of the Orenburg Region (Abramova et al., 2017) and the «Black book of flora of Middle Russia» (Vinogradova et al., 2010), are discussed in the article, which continues a series of publications on the classification of communities with alien species in the South Urals (Abramova, 2011, 2016; Abramova, Golovanov, 2016b). H. jubatum was first found in the South Urals in 1984 as an adventive plant occurring along streets in the town of Beloretsk, as well as in gardens where it was grown as an ornamental plant. During the 1980s, it was met also at some railway stations and in several rural localities. Its active distribution throughout the South Urals started in XXI century (Muldashev et al., 2017). Currently, H. jubatum, most naturalized in the native salted habitats of the steppe zone, is often found in disturbed habitats in all natural zones within the region. The short vegetating period and resistance to drought allowed it to be naturalized also in dry steppes, where it increasingly acts as the main weed on broken pastures. The aim of the work, conducted during 2011–2017, was further finding the centers of H. jubatum invasion in 3 regions adjacent to the South Urals — the Republic of Bashkortostan and the Chelyabinsk and Orenburg Regions (Fig. 1). In the main sites of H. jubatum invasion 71 relevès were performed on 10–100 m² sample plots with the information of location, date, the plot size, the total cover, average and maximum height of herb layer. Classification was carried out following the Braun-Blanquet method (Braun-Blanquet, 1964) with using the Kopecký–Hejný approach (Kopecký, Hejný, 1974). The community ecology was assessed by weighted average values according to the optimal ecological scales by E. Landolt with usfge of the software of IBIS (Zverev, 2007). PCA-ordination method with usage CANOCO 4.5 software package was applied to identify patterns of environmental differentiation of invasive communities. The current wide distribution area of H. jubatum and its naturalization in synanthropic, meadow and saline communities in the South Urals, as well as its occurrence within mountain-forest belt, forest-steppe and steppe zones both in the Cis- and Trans-Urals, indicates species wide ecological amplitude, high adaptive capability and invasive potential. Its vast thickets are known in the steppe zone, both in disturbed steppes around settlements and along the banks of water bodies. The invasion sites are smaller in the northern regions and mountain forest belt, where these are located in settlements or along communication lines. Therefore, the steppe zone is more favorable for invasive populations, and their distribution will continue from the south to the north. Communities with predominance of H. jubatum, described earlier (Abramova, Golovanov, 2016b) in the Cis-Urals as two derivative communities (associations Hordeum jubatum [Scorzonero–Juncetea gerardii], Hordeum jubatum [Artemisietea]) and Polygono avicularis–Hordeetum jubati, were met in other regions of the South Urals. Also a new derivative community Hordeum jubatum–Poa pratensis [Cynosurion cristati], occuring in the northern part of the Cis-Urals and Trans-Urals, was established. In new habitats this species forms three types of communities: ass. Polygono avicularis–Hordeetum jubati (Fig. 2) the most widespread in anthropogenic habitats throughout the South Urals; derivative community Hordeum jubatum–Juncus gerardii [Scorzonero–Juncetalia gerardii] (Fig. 5) which replaces saline meadows mainly in the steppe zone of the region; derivative community Hordeum jubatum–Poa pratensis [Cynosurion cristati] (Fig. 4) which y replaces low-herb meadows in the forest-steppe zone and mountain-forest belt. PCA ordination (Fig. 6) shows that moisture (H) and soil richness-salinization (S) factors are in priority in differentiation of communities with predominance H. jubatum. The first axis is mainly related to the salinization and soil richness. The community pattern along the second axis is associated with wetting factor. The cenoses of the derivative community Hordeum jubatum–Poa pratensis [Cynosurion cristati] (less salted substrates in drier conditions in the northern part of the forest-steppe zone and the mountain forest belt) are grouped in the upper part of the ordination diagram, while communities of ass. Polygono avicularis–Hordeetum jubati (drier conditions in settlements, the steppe zone) in its low left part. Thus, axis 1 also reflects the intensity of trampling. Another group is formed by cenoses of the derivate community Hordeum jubatum–Juncus gerardii [Scorzonero–Juncetalia gerardii], (salt substrates with a high level of moisturization, on not very damaged water body banks). All communities with H. jubatum are well differentiated in the space of the main ordination axes that indirectly confirms the correctness of our syntaxonomic decision. Undoubted is further expansion of H. jubatum with its entering both anthropogenic and natural plant communities within the South Urals that suggests a constant monitoring in centers of species invasion.


2019 ◽  
pp. 118-134
Author(s):  
G. R. Khasanova ◽  
S. M. Yamalov ◽  
M. V. Lebedeva ◽  
Z. Kh. Shigapov

Segetal, or weed, communities are the stands of the weed plant species which are formed under the influence of edafo-climatic conditions and the mode of soil disturbance within the processing of crop rotation (agrotechnical factor) (Mirkin, Naumova, 2012). This paper is the second part of weed community study in the South Ural, assigned to the class Papaveretea rhoeadis S. Brullo et al. 2001, syntaxon unites the weed communities of winter cereals with two orders: Aperetalia spica-venti J. Tx. et Tx. in Malato-Beliz et al. 1960 and Papaveretalia rhoeadis Hüppe et Hofmeister ex Theurillat et al. 1995; and three alliances (Khasanova et al., 2018). Data on diversity, floristic, ecological and spatial differentiation of mesoxeric and xeric weed communities of the alliances Caucalidion Tx. ex von Rochow 1951 and Lactucion tataricae Rudakov in Mirkin et al. 1985 in steppe and southern part of the forest-steppe zones are given (Table 1; Fig. 1). The dataset contains 756 relevés: 647 made by authors during the field seasons of 2002–2018, while 109 taken from published monography (Mirkin et al., 1985). The alliance Caucalidion combines weed communities on rich carbonate chernozem soils in the forest-steppe zone. Diagnostic species are Galeopsis bifida, G. ladanum, Galium aparine, Erodium cicutarium, Persicaria lapathifolia, Silene noctiflora, Thlaspi arvense. This alliance occupies the central position within class between communities of forest zone of the alliance Scleranthion annui and these of the steppe zone of the alliance Lactucion tataricae. The last alliance combines weed communities of the steppe zone and southern part of the forest-steppe one on south and typical chernozem soils. Two species are diagnostic: Lactuca tatarica and Panicum miliaceum. Alliances are differentiated in sample plot species richness and coenoflora: 145 species in alliance Caucalidion coenoflora (mean species number per plot is 16), and 207 species in that of Lactucion tataricae (consequently 13 species). There are 8 associations, 4 subassociations, 6 variants, 1 unrank community within these two alliances, among which 5 associations and all subassociations are new. The alliance Caucalidion includes 4 associations with spatiall and crop differentiation, which are mainly character for the forest-steppe part of the Trans-Urals within the bounds of forest-steppe region of the eastern slope of the Southern Urals. Two associations are new: Cannabio ruderalis–Galeopsietum ladani ass. nov. hoc loco (Table 2; holotypus hoc loco — rele­vé 7) unites weed communities of winter, less often — spring crops; Lycopsio arvensis–Camelinetum microcarpae ass. nov. hoc loco (Table 4; holotypus hoc loco — relevé 3) unites weed communities of row crops, mainly sunflower, less often — cereals. In the same area the communities of the ass. Cannabio ruderalis–Sinapietum arvensis Rudakov in Mirkin et al. 1985 (Table 3) unite the weed communities of mainly winter cereals — wheat and rye. These communities, described in 1980s, previously were widespread in the Trans-Urals (Mirkin et al., 1985), while now occur locally in the northern part of this area. The communities of ass. Centaureo cyani–Stachyetum annuae Abramova in Mirkin et al. 1985, also described in the 1980s, were not found in the 2010s. The diversity of the most xerophytic alliance Lactucion tataricae is represented by 4 associations which occur both in the Trans-Urals and the Cis-Urals. The most common in the last area are weed row crops (beet, nute, flax, sunflower, corn, peas, buckwheat) communities of the ass. Echinochloo crusgalli–Panicetum miliacei ass. nov. hoc loco (Table 5; holotypus hoc loco — relevé 5. They are common in five natural districts: Predbelskiy forest-steppe one, forest and fo­rest-steppe of Belebey Upland, Cis-Urals steppe one, forest and forest-steppe one on Zilair Plateu, and Zabelskiy district of the broad-leaved forests. The weed communities of spring and winter cereals of the ass. Lathyro tuberosi–Convolvuletum arvensis ass. nov. hoc loco (Table 6; holotypus hoc loco — relevé 5) are common only within the Cis-Urals steppe district. The communities of ass. Lactuco serriolae–Tripleurospermetum inodori ass. nov. hoc loco (Table 7; holotypus hoc loco — relevé 2) which unites the weed communities of winter cereals, are common in the steppe zone and the southern part of the forest steppe one of the Trans-Urals and the Cis-Urals within the Cis-Urals steppe, Trans-Urals steppe, and Predbelskiy forest-steppe districts. The communities of the ass. Lactucetum tataricae Rudakov in Mirkin et al. 1985 are associated exclusively with the steppe zone of the Trans-Urals. The Lactuca tatarica community (Table 8), distributed in the steppe and southern part of the forest steppe zones of the Trans-Urals, probably is derived from the ass. Lactucetum tataricae under the intensive chemical weeding of cereal crops. Floristic differentiation of associations is confirmed by the results of the ordination analysis (Fig. 2), the diagram of which shows the distribution of communities along the moisture (first axis) and the complex soil richness–salinity gradient and agrocoenotic factor (second axis).


Fertility reproduction features of southern carbonate chernozems in the conditions of the dry-steppe zone of Northern Kazakhstan (Shortandinsky district of Akmola region) are studied. We studied the changes of humus content in the model micro plot experience. Various variants of the experiment with non-fallow and dump steam without fertilizers, grain crops with different doses of mineral fertilizers, manure, as well as with straw and sideral crops (pea-oat mixture, Donnik) are laid down. The introduction of rotted manure in small doses of 20 t / ha did not provide an increase in humus during crop rotation. When adding 40 and 80 t / ha of manure to the fallow field, it allowed to increase the humus content by 0.24 and 0.18 % of the initial amount. The introduction of sideral steam and perennial grasses into crop rotation enhanced the processes of humification and provided a positive balance of humus. In this version of the experiment, the amount of humus increased by 0.10-0.13 %. The greatest accumulation of organic matter occurred when using melilot: the increase in humus was 0.39 %. Long-term cultivation of permanent wheat crop in one field, even with high doses of mineral fertilizers, does not provide significant reproduction of soil fertility. The application of mineral fertilizers does not contribute to the increase of humus in the soil. The greatest decrease in humus content in southern chernozems is observed in the permanent dump and waste-free pair-0.11 and 0.13% over a 6-year period of observations.


Peanuts are plants of the tropical zone, therefore, for its growth and development, high temperature indicators are needed during a fairly long growing season. The climatic parameters of the south of Ukraine correspond to the needs of this culture, and today there is positive experience in growing peanuts in this region. In order to increase the efficiency of growing peanuts in the conditions of the Steppe zone, it is necessary to carry out genetic selection work to study and select a more adapted source material in order to create highly productive Ukrainian varieties adapted to the arid zone conditions. At the initial stage of this work, it is necessary to have clear signs and characteristics for evaluating the studied genotypes, and the existing methods for describing the characters and conducting an examination for distinctness, uniformity, and stability are incomplete and do not meet the requirements for in-depth work on private genetics and culture breeding. For our work, we used 18 peanut genotypes as a material, which make up the collection of the Institute of Oilseeds of NAASU. Studies were carried out in 2018 and 2019, in different weather conditions. All measurements, observations and statistical processing in the study of samples were carried out in accordance with generally accepted methods. When conducting a comparative analysis of the two methods for describing the signs of underground peanuts, it was found that one of the methods contains 23 signs and the other 17. The signs of the vegetative part of plants that characterize the habit and structure of the leaf predominate in both methods. We have identified and proposed for description 9 new characters in peanut plants: 2 - leaf characters (additional leaves and pubescence); 1 - the structure of beans (weight 100 beans); 1 - an economically valuable trait (the presence of nodules on the roots); 5 - flower features (size and color of the flower and border). In terms of plant habitat, Ukrainian Stepnyak and Krasnodar 13 varieties were distinguished, which had the highest height (43.8 cm) and the largest number of branches (9.3 pcs.). In addition to morphological identification features for the description and examination of distinctness, uniformity and stability, we have also studied the quantitative characteristics of underground peanuts. It was established that the height of peanut plants in the field conditions of the south of Ukraine ranged from 14 to 44 cm. The highest variety was the Ukrainian Stepnyak variety, and the shortest one was Pink large. The largest number of branches is 9.3 pcs. noted in the variety Krasnodar 13, and the smallest 4.62 pcs. - at L3. And the largest flower of 1.91 cm stood out White-pink 3. The quantitative traits we studied are characterized by continuous variability, which is due to the interaction between genes and the environment. Thus, to identify varietal variability in underground peanuts, it is necessary to use both existing methods, and in the near future, work should be done to combine them with the inclusion of new identified characters to more clearly identify the genotypes of this new valuable oilseed crop.


2020 ◽  
Vol 33 ◽  
pp. 1187-1191
Author(s):  
L.R. Sassykova ◽  
Y.A. Aubakirov ◽  
M. Sh. Akhmetkaliyeva ◽  
A.R. Sassykova ◽  
S. Sendilvelan ◽  
...  

2015 ◽  
Vol 48 (3) ◽  
pp. 294-302 ◽  
Author(s):  
N. N. Kashirskaya ◽  
T. E. Khomutova ◽  
E. V. Chernysheva ◽  
M. V. El’tsov ◽  
V. A. Demkin

Author(s):  
V. N. Pristupa ◽  
D. S. Torosyan

The purpose of the work was to study and identify the main factors aff ecting the quantity and quality of beef produced and sold in the Southern Federal district. A comparative assessment of the growth, development, formation of meat productivity and quality of beef of young animals of beef, dual and dairy breeds with stall-pasture technology and intensive rearing in the industrial complex. Experimental studies have been carried out in farms in the Rostov region. The object of research was cows with calves of Kalmyk, Hereford, Aberdeen-Angus, Russian komolaya, Kazakh White-headed breeds, as well as young animals of the same breeds, in addition, Black-and-White and Swiss breeds. Removable live weight in Hereford steers at 18 months of age was 658,0 kg, and Aberdeen-Angus – 655,2 kg. Domestic steers of Kalmyk were 41–44 kg lower in live weight than their herdmates of two imported breeds. However, with intensive rearing at 18 months of age, steers of Kalmyk breed had a removable live weight of more than 613,7 kg and a carcass weight of 326 kg. The yield of hot carcass was 55,4 %, and the slaughter yield was 58,89 %, which was only 1–2 % lower than the world’s leading beef breeds. It has been found when analyzing the results of boning the half-carcasses of experimental steers that the biggest weight of half-carcasses and the content of muscle and fat tissue in them in absolute terms were in Hereford steers. Steers of Kalmyk breed took the third place in terms of weight of large-sized semi–fi nished products and signifi cantly lost to Aberdeen-Angus herdmates by 7,3 kg or 6,5 %, and Hereford steers by 9,2 kg or 8,3 %. The results obtained prove the expediency of using stallpasture technology in the dry-steppe zone of the Southern Federal district when rearing young animals for beef up to 350–400 kg live weight at 15 months of age and its subsequent intensive rearing under industrial technology, in order to obtain the live weight of more than 570 kg and produce cost-eff ective beef.


Sign in / Sign up

Export Citation Format

Share Document