scholarly journals Sliding Mode Based Self-Tuning PID Controller for Second Order Systems

Author(s):  
Alper BAYRAK
2020 ◽  
Vol 51 (16) ◽  
pp. 3425-3435
Author(s):  
Juan Diego Sánchez-Torres ◽  
Aldo Jonathan Muñoz-Vázquez ◽  
Michael Defoort ◽  
Rodrigo Aldana-López ◽  
David Gómez-Gutiérrez

Author(s):  
Carlos Vázquez ◽  
Leonid Fridman ◽  
Joaquin Collado ◽  
Ismael Castillo

A five degrees-of-freedom overhead crane system affected by external perturbations is the topic of study. Existing methods just handle the unperturbed case or, in addition, the analysis is limited to three or two degrees-of-freedom. A wide range of processes cannot be restricted to these scenarios and this paper goes a step forward proposing a control solution for a five degrees-of-freedom system under the presence of matched and unmatched disturbances. The contribution includes a model description and a second-order sliding mode (SOSM) control design ensuring the precise trajectory tracking for the actuated variables and at the same time the regulation of the unactuated variables. Furthermore, the proposed approach is supported by the design of strong Lyapunov functions providing an estimation of the convergence time. Simulations and experiments, including a comparison with a proportional-integral-derivative (PID) controller, verified the advantages of the methodology.


Automation ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 266-277
Author(s):  
Romain Delpoux ◽  
Thierry Floquet ◽  
Hebertt Sira-Ramírez

In this paper, an algebraic approach for the finite-time feedback control problem is provided for second-order systems where only the second-order derivative of the controlled variable is measured. In practice, it means that the acceleration is the only variable that can be used for feedback purposes. This problem appears in many mechanical systems such as positioning systems and force-position controllers in robotic systems and aerospace applications. Based on an algebraic approach, an on-line algebraic estimator is developed in order to estimate in finite time the unmeasured position and velocity variables. The obtained expressions depend solely on iterated integrals of the measured acceleration output and of the control input. The approach is shown to be robust to noisy measurements and it has the advantage to provide on-line finite-time (or non-asymptotic) state estimations. Based on these estimations, a quasi-homogeneous second-order sliding mode tracking control law including estimated position error integrals is designed illustrating the possibilities of finite-time acceleration feedback via algebraic state estimation.


2021 ◽  
Vol XXVIII (4) ◽  
pp. 63-73
Author(s):  
Irina Cojuhari ◽  

An algorithm for self-tuning the PID controller to the second order systems is proposed in this paper. The proposed self-tuning procedure was developed according to the maximum stability degree criterion, the criterion that permits to achieve the high stability degree, good performance and robustness of the system. According to the proposed algorithm, the controller can be tuned according to the parameters that characterize the process and they can be determinate from the experimental response of the open loop system. To demonstrate the efficiency of proposed procedure of self-tuning the PID controller, the computer simulation was performed and the obtained results were compared with Haeri’s method, maximum stability degree method with iterations and parametrical optimization method. According to the developed algorithm, it was performed the control of the thermal regime in the oven.


Sign in / Sign up

Export Citation Format

Share Document