scholarly journals Locating-chromatic number of the edge-amalgamation of trees

2020 ◽  
Vol 4 (2) ◽  
pp. 126
Author(s):  
Dian Kastika Syofyan ◽  
Edy Tri Baskoro ◽  
Hilda Assiyatun

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>The investigation on the locating-chromatic number of a graph was initiated by Chartrand </span><span>et al. </span><span>(2002). This concept is in fact a special case of the partition dimension of a graph. This topic has received much attention. However, the results are still far from satisfaction. We can define the locating-chromatic number of a graph </span><span>G </span><span>as the smallest integer </span><span>k </span><span>such that there exists a </span><span>k</span><span>-partition of the vertex-set of </span><span>G </span><span>such that all vertices have distinct coordinates with respect to this partition. As we know that the metric dimension of a tree is completely solved. However, the locating-chromatic numbers for most of trees are still open. For </span><span><em>i</em> </span><span>= 1</span><span>, </span><span>2</span><span>, . . . , <em>t</em>, </span><span>let </span><em>T</em><span>i </span><span>be a tree with a fixed edge </span><span>e</span><span>o</span><span>i </span><span>called the terminal edge. The edge-amalgamation of all </span><span>T</span><span>i</span><span>s </span><span>denoted by Edge-Amal</span><span>{</span><span>T</span><span>i</span><span>;</span><span>e</span><span>o</span><span>i</span><span>} </span><span>is a tree formed by taking all the </span><span>T</span><span>i</span><span>s and identifying their terminal edges. In this paper, we study the locating-chromatic number of the edge-amalgamation of arbitrary trees. We give lower and upper bounds for their locating-chromatic numbers and show that the bounds are tight.</span></p></div></div></div>

Author(s):  
János Pach ◽  
Gábor Tardos ◽  
Géza Tóth

Abstract The disjointness graph G = G(𝒮) of a set of segments 𝒮 in ${\mathbb{R}^d}$ , $$d \ge 2$$ , is a graph whose vertex set is 𝒮 and two vertices are connected by an edge if and only if the corresponding segments are disjoint. We prove that the chromatic number of G satisfies $\chi (G) \le {(\omega (G))^4} + {(\omega (G))^3}$ , where ω(G) denotes the clique number of G. It follows that 𝒮 has Ω(n1/5) pairwise intersecting or pairwise disjoint elements. Stronger bounds are established for lines in space, instead of segments. We show that computing ω(G) and χ(G) for disjointness graphs of lines in space are NP-hard tasks. However, we can design efficient algorithms to compute proper colourings of G in which the number of colours satisfies the above upper bounds. One cannot expect similar results for sets of continuous arcs, instead of segments, even in the plane. We construct families of arcs whose disjointness graphs are triangle-free (ω(G) = 2), but whose chromatic numbers are arbitrarily large.


Author(s):  
Asmiati ◽  
I. Ketut Sadha Gunce Yana ◽  
Lyra Yulianti

The locating chromatic number of a graph G is defined as the cardinality of a minimum resolving partition of the vertex set V(G) such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in G are not contained in the same partition class. In this case, the coordinate of a vertex v in G is expressed in terms of the distances of v to all partition classes. This concept is a special case of the graph partition dimension notion. In this paper we investigate the locating chromatic number for two families of barbell graphs.


2016 ◽  
Vol 24 (1) ◽  
pp. 153-176 ◽  
Author(s):  
Kinkar Ch. Das ◽  
Nihat Akgunes ◽  
Muge Togan ◽  
Aysun Yurttas ◽  
I. Naci Cangul ◽  
...  

AbstractFor a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as, where dG(vi) is the degree of vertex vi in G. Recently Xu et al. introduced two graphical invariantsandnamed as first multiplicative Zagreb coindex and second multiplicative Zagreb coindex, respectively. The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G, that is, NK(G) =. The irregularity index t(G) of G is defined as the number of distinct terms in the degree sequence of G. In this paper, we give some lower and upper bounds on the first Zagreb index M1(G) of graphs and trees in terms of number of vertices, irregularity index, maxi- mum degree, and characterize the extremal graphs. Moreover, we obtain some lower and upper bounds on the (first and second) multiplicative Zagreb coindices of graphs and characterize the extremal graphs. Finally, we present some relations between first Zagreb index and Narumi-Katayama index, and (first and second) multiplicative Zagreb index and coindices of graphs.


Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 2 ◽  
Author(s):  
Ke Zhang ◽  
Haixing Zhao ◽  
Zhonglin Ye ◽  
Yu Zhu ◽  
Liang Wei

A hypergraph H = ( V , ε ) is a pair consisting of a vertex set V , and a set ε of subsets (the hyperedges of H ) of V . A hypergraph H is r -uniform if all the hyperedges of H have the same cardinality r . Let H be an r -uniform hypergraph, we generalize the concept of trees for r -uniform hypergraphs. We say that an r -uniform hypergraph H is a generalized hypertree ( G H T ) if H is disconnected after removing any hyperedge E , and the number of components of G H T − E is a fixed value k   ( 2 ≤ k ≤ r ) . We focus on the case that G H T − E has exactly two components. An edge-minimal G H T is a G H T whose edge set is minimal with respect to inclusion. After considering these definitions, we show that an r -uniform G H T on n vertices has at least 2 n / ( r + 1 ) edges and it has at most n − r + 1 edges if r ≥ 3   and   n ≥ 3 , and the lower and upper bounds on the edge number are sharp. We then discuss the case that G H T − E has exactly k   ( 2 ≤ k ≤ r − 1 ) components.


2012 ◽  
Vol 21 (4) ◽  
pp. 611-622 ◽  
Author(s):  
A. KOSTOCHKA ◽  
M. KUMBHAT ◽  
T. ŁUCZAK

A colouring of the vertices of a hypergraph is called conflict-free if each edge e of contains a vertex whose colour does not repeat in e. The smallest number of colours required for such a colouring is called the conflict-free chromatic number of , and is denoted by χCF(). Pach and Tardos proved that for an (2r − 1)-uniform hypergraph with m edges, χCF() is at most of the order of rm1/r log m, for fixed r and large m. They also raised the question whether a similar upper bound holds for r-uniform hypergraphs. In this paper we show that this is not necessarily the case. Furthermore, we provide lower and upper bounds on the minimum number of edges of an r-uniform simple hypergraph that is not conflict-free k-colourable.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1860
Author(s):  
Rija Erveš ◽  
Janez Žerovnik

We obtain new results on 3-rainbow domination numbers of generalized Petersen graphs P(6k,k). In some cases, for some infinite families, exact values are established; in all other cases, the lower and upper bounds with small gaps are given. We also define singleton rainbow domination, where the sets assigned have a cardinality of, at most, one, and provide analogous results for this special case of rainbow domination.


2013 ◽  
Vol 2 (1) ◽  
pp. 14
Author(s):  
Mariza Wenni

Let G and H be two connected graphs. Let c be a vertex k-coloring of aconnected graph G and let = fCg be a partition of V (G) into the resultingcolor classes. For each v 2 V (G), the color code of v is dened to be k-vector: c1; C2; :::; Ck(v) =(d(v; C1); d(v; C2); :::; d(v; Ck)), where d(v; Ci) = minfd(v; x) j x 2 Cg, 1 i k. Ifdistinct vertices have distinct color codes with respect to , then c is called a locatingcoloring of G. The locating chromatic number of G is the smallest natural number ksuch that there are locating coloring with k colors in G. The Cartesian product of graphG and H is a graph with vertex set V (G) V (H), where two vertices (a; b) and (a)are adjacent whenever a = a0and bb02 E(H), or aa0i2 E(G) and b = b, denotedby GH. In this paper, we will study about the locating chromatic numbers of thecartesian product of two paths, the cartesian product of paths and complete graphs, andthe cartesian product of two complete graphs.


10.37236/9903 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Luciano N. Grippo ◽  
Adrián Pastine ◽  
Pablo Torres ◽  
Mario Valencia-Pabon ◽  
Juan C. Vera

This paper considers an infection spreading in a graph; a vertex gets infected if at least two of its neighbors are infected. The $P_3$-hull number is the minimum size of a vertex set that eventually infects the whole graph. In the specific case of the Kneser graph $K(n,k)$, with $n\ge 2k+1$, an infection spreading on the family of $k$-sets of an $n$-set is considered. A set is infected whenever two sets disjoint from it are infected. We compute the exact value of the $P_3$-hull number of $K(n,k)$ for $n>2k+1$. For $n = 2k+1$, using graph homomorphisms from the Knesser graph to the Hypercube, we give lower and upper bounds.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 78 ◽  
Author(s):  
Hassan Raza ◽  
Sakander Hayat ◽  
Muhammad Imran ◽  
Xiang-Feng Pan

In this paper, we consider fault-tolerant resolving sets in graphs. We characterize n-vertex graphs with fault-tolerant metric dimension n, n − 1 , and 2, which are the lower and upper extremal cases. Furthermore, in the first part of the paper, a method is presented to locate fault-tolerant resolving sets by using classical resolving sets in graphs. The second part of the paper applies the proposed method to three infinite families of regular graphs and locates certain fault-tolerant resolving sets. By accumulating the obtained results with some known results in the literature, we present certain lower and upper bounds on the fault-tolerant metric dimension of these families of graphs. As a byproduct, it is shown that these families of graphs preserve a constant fault-tolerant resolvability structure.


Author(s):  
B. ShekinahHenry ◽  
Y. S. Irine Sheela

The [Formula: see text]-cube graph or hypercube [Formula: see text] is the graph whose vertex set is the set of all [Formula: see text]-dimensional Boolean vectors, two vertices being joined if and only if they differ in exactly one co-ordinate. The purpose of the paper is to investigate the signed domination number of this hypercube graphs. In this paper, signed domination number [Formula: see text]-cube graph for odd [Formula: see text] is found and the lower and upper bounds of hypercube for even [Formula: see text] are found.


Sign in / Sign up

Export Citation Format

Share Document